To understand the characteristics of the separated stratified premixed swirl methane/air flame, effects of the Stratification Ratio (SR) on the structure of the separated stratified premixed swirl flame are experimentally investigated. Methane is used as the fuel in the experiment, and the change of the mean flame configurations-or the macrostructures-characterized by flame CH* chemiluminescence, including flame stabilization, flame front and flashback, etc. are measured by varying the SR at normal temperature and pressure. We observe the changes in the method of flame stabilization and the main heat release zone. Under the combined influence of the corner recirculation zone, lip recirculation zone and principal recirculation zone, flame stabilization points appear at four locations, including the downstream of the central body, the rims of the lip and the edge of the main tube exit, as the SR varies. Hence, 6 new modes of the separated stratified premixed swirl flame are first proposed:Y mode, V mode, symmetric D mode, wrinkled mode, narrow W mode and wide W mode, which are different from the modes of the stratified premixed swirl flame in other research. The results show that the SR has an important impact on the flame macrostructure and flame self-excitation, which can be explained by rich burn, lean burn and flammable limit of methane.
[1] KIM K T. Combustion instability feedback mechanisms in a lean-premixed swirl-stabilized combustor[J]. Combustion and Flame, 2016, 171:137-151.
[2] KIM D, PARK S W. Forced and self-excited oscillations in a natural gas fired lean premixed combustor[J]. Fuel Processing Technology, 2010, 91(11):1670-1677.
[3] HAN Z Y, HOCHGREB S. The response of stratified swirling flames to acoustic forcing:Experiments and comparison to model[J]. Proceedings of the Combustion Institute, 2015, 35(3):3309-3315.
[4] DHANUKA S K, TEMME J E, DRISCOLL J F, et al. Vortex-shedding and mixing layer effects on periodic flashback in a lean premixed prevaporized gas turbine combustor[J]. Proceedings of the Combustion Institute, 2009, 32(2):2901-2908.
[5] STOUFFER S, BALLAL D, ZELINA J, et al. Development and combustion performance of high pressure WSR and TAPS combustor:AIAA-2005-1416[R]. Reston, VA:AIAA, 2005.
[6] MONGIA H. TAPS:A fourth generation propulsion combustor technology for low emissions:AIAA-2003-2657[R]. Reston, VA:AIAA, 2003.
[7] DHANUKA S K, TEMME J E, DRISCOLL J F. Unsteady aspects of lean premixed prevaporized gas turbine combustors:Flame-flame interactions[J]. Journal of Propulsion and Power, 2011, 27(3):631-641.
[8] ZHANG C, ZOU P F, WANG B S, et al. Comparison of flame dynamics at stable and near-LBO conditions for swirl-stabilized kerosene spray combustion:GT2015-42596[R]. New York:ASME, 2015.
[9] 秦皓, 丁志磊, 李海涛, 等. LESS燃烧室非定常旋流流动[J]. 航空动力学报, 2015, 30(7):1566-1575. QIN H, DING Z L, LI H T, et al. Unsteady swirling flow in low emissions stirred swirls combustor[J]. Journal of Aerospace Power, 2015, 30(7):1566-1575(in Chinese).
[10] 汤冠琼, 秦皓, 林宇震, 等. 当量比对分层旋流火焰燃烧不稳定性的影响[J]. 推进技术, 2015, 36(9):1355-1360. TANG G Q, QIN H, LIN Y Z, et al. Effects of equivalence ratio on combustion instability characteristics of staged swirl flame[J]. Journal of Propulsion Technology, 2015, 36(9):1355-1360(in Chinese).
[11] 秦皓, 汤冠琼, 林宇震, 等. 燃油分级比对LESS燃烧室压力振荡频率的影响[J]. 航空动力学报, 2015, 30(6):1337-1343. QIN H, TANG G Q, LIN Y Z, et al. Influence of fuel stage ratio on pressure oscillation frequency of LESS combustor[J]. Journal of Aerospace Power, 2015, 30(6):1337-1343(in Chinese).
[12] FU Z B, LIN Y Z, LI L, et al., Experimental and numerical studies of a lean-burn internally-staged combustor[J]. Chinese Journal of Aeronautics, 2014, 27(3):488-496.
[13] QIN H, LIN Y Z, LI J B. Precessing motion in stratified radial swirl flow[J]. Chinese Journal of Aeronautics, 2016, 29(2):386-394.
[14] 秦皓, 付镇柏, 林宇震, 等. 基于燃烧室压力振荡的火焰筒结构优化[J]. 航空动力学报, 2015, 30(5):1076-1083. QIN H, FU Z B, LIN Y Z, et al. Investigation on liner structure optimization based on pressure oscillation in combustors[J]. Journal of Aerospace Power, 2015, 30(5):1076-1083(in Chinese).
[15] 秦皓, 丁志磊, 林宇震, 等. 同心分级旋流结构的动态响应特征[J]. 航空动力学报, 2015, 30(4):793-799. QIN H, DING Z L, LIN Y Z, et al. Dynamic response characteristic of concentric stage swirling structure[J]. Journal of Aerospace Power, 2015, 30(4):793-799(in Chinese).
[16] HAN X, HUI X, QIN H, et al. Effect of the diffuser on the inlet acoustic boundary in combustion-acoustic coupled oscillation:GT2016-57046[R]. New York:ASME, 2016.
[17] HUANG Y, YANG V. Bifurcation of flame structure in a lean-premixed swirl-stabilized combustor:Transition from stable to unstable flame[J]. Combustion and Flame, 2004, 136(3):383-389.
[18] KIM K T, HOCHGREB S. The nonlinear heat release response of stratified lean-premixed flames to acoustic velocity oscillations[J]. Combustion and Flame, 2011, 158(12):2482-2499.
[19] HOCHGREB S, DENNIS D, AYRANCI I, et al. Forced and self-excited instabilities from lean premixed, liquid-fuelled aeroengine injectors at high pressures and temperatures:GT2013-95311[R]. New York:ASME, 2013.
[20] SWEENEY M S, HOCHGREB S, DUNN M J, et al. The structure of turbulent stratified and premixed methane/air flames I:Non-swirling flows[J]. Combustion and Flame, 2012, 159(9):2896-2911.
[21] SWEENEY M S, HOCHGREB S, DUNN M J, et al. The structure of turbulent stratified and premixed methane/air flames Ⅱ:Swirling flows[J]. Combustion and Flame, 2012, 159(9):2912-2929.
[22] ZHOU R G, HOCHGREB S. The behaviour of laminar stratified methane/air flames in counterflow[J]. Combustion and Flame, 2013, 160(6):1070-1082.
[23] CHONG C T, LAM S S, HOCHGREB S. Effect of mixture flow stratification on premixed flame structure and emissions under counter-rotating swirl burner configuration[J]. Applied Thermal Engineering, 2016, 105:905-912.
[24] TEMME J E, ALLISON P M, DRISCOLL J F. Combustion instability of a lean premixed prevaporized gas turbine combustor studied using phase-averaged PIV[J]. Combustion and Flame, 2014, 161(4):958-970.
[25] LIEUWEN T C, YANG V. Combustion instabilities in gas turbine engines:Operational experience, fundamental mechanisms and modeling:AIAA-2005-0210[R]. Reston, VA:AIAA, 2005.
[26] HARDALUPAS Y, ORAIN M. Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame[J]. Combustion and Flame, 2004,139(3):188-207.
[27] SAMANIEGO J M, EGOLFOPOULOS F N, BOWMAN C T. CO2* chemiluminescence in premixed flames[J]. Combustion Science and Technology, 1995, 109(1-6):183-203.
[28] AYOOLA B O, BALACHANDRAN R, FRANK J H, et al. Spatially resolved heat release rate measurements in turbulent premixed flames[J]. Combustion and Flame, 2006, 144(1-2):1-16.
[29] BARNETT H C, HIBBARD R R. Basic considerations in the combustion of hydrocarbon fuels with air:1957-1300[R]. Washington, D.C.:NACA, 1957.
[30] ANDREWA G E, BRADLEY D. The burning velocity of methane-air mixtures[J]. Combustion and Flame, 1972, 19(2):275-288.