Fluid Mechanics and Flight Mechanics

An efficient surrogate-based global optimization for low sonic boom design

  • QIAO Jianling ,
  • HAN Zhonghua ,
  • SONG Wenping
Expand
  • National Key Laboratory of Science and Technology on Aerodynamic Design and Research, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2017-09-11

  Revised date: 2017-11-08

  Online published: 2017-11-08

Supported by

National Natural Science Foundation of China (11772261); Aeronautical Science Foundation of China (2016ZA53011)

Abstract

It is of great significance to develop efficient numerical optimization methods for low boom design of future supersonic transport aircrafts. To this end, researchers have developed the methods of combining sonic boom prediction with Genetic Algorithm (GA), gradient-based optimization using an Adjoint approach, etc. However, GA has suffered from the prohibitive computational cost for high-dimensional design optimization, and gradient-based optimization can become trapped into a local optimum. This paper proposes to use efficient surrogate-based global optimization towards more effective low sonic boom design. First, the fundamentals of the Whitham theory are introduced, and a comparison of the predicted pressure signals with experimental data shows that the theory is efficient and reasonably accurate for preliminary design of a supersonic transport aircraft. Second, the framework of Surrogate-Based Optimization (SBO) is introduced, including the key elements such as design of experiments, surrogate modeling, infill-sampling criteria and convergence criteria, etc. Third, the proposed methodology of low sonic boom design optimization using SBO is verified by a benchmark sonic boom model of the NASA stepped cone. The comparative study shows that the efficiency of the proposed method is two-orders higher than that of GA, and the optimization results are apparently better than that obtained by the gradient-based method. Finally, a wing-body configuration (69° sweepback delta wing body) taken from the first sonic boom prediction workshop of AIAA is optimized by using the proposed method, and 27.4% reduction of overpressure of the far-field N-wave is achieved. This test demonstrates the great potential of applying the surrogate-based optimization to low boom design of more complex configurations.

Cite this article

QIAO Jianling , HAN Zhonghua , SONG Wenping . An efficient surrogate-based global optimization for low sonic boom design[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(5) : 121736 -121736 . DOI: 10.7527/S1000-6893.2017.21736

References

[1] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8):2507-2528. ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2507-2528(in Chinese).
[2] WHITHAM G. The flow pattern of a supersonic project[J]. Communications on Pure and Applied Mathematics, 1952, 5(3):301-347.
[3] HAYES W D. Brief review of basic theory:Sonic boom research:NASA SP-147[R]. Washington, D.C.:NASA, 1967.
[4] SEEBASS R. Sonic boom theory[J]. Journal of Aircraft, 1969, 6(3):177-184.
[5] SEEBASS R, GEORGE A R. Sonic boom minimization[J]. Journal of the Acoustical Society of America, 1972, 51(2):686-694.
[6] SEEBASS R, ARGROWB. Sonic boom minimization revisited:AIAA-1998-2956[R]. Reston, VA:AIAA, 1998.
[7] CARLSON H W. Simplified sonic boom prediction:NASA TP-1122[R]. Washington, D.C.:NASA, 1978.
[8] THOMAS L C. Extrapolation of sonic boom pressure signatures by the waveform parameter method:NASA TN D-6832[R]. Washington, D.C.:NASA, 1972.
[9] CLEVELAND O R. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin:University of Texas at Austin, 1995:6-37.
[10] POTAPKIN A V, KOROTAEVA T A, MOSKVICHEV D Y, et al. Anadvanced approach for far-field sonic boom prediction:AIAA-2009-1056[R]. Reston, VA:AIAA, 2009.
[11] YAMASHITA R, SUZUKI K. Full-field sonic boom simulation in real atmosphere:AIAA-2014-2269[R]. Reston, VA:AIAA, 2014.
[12] WINTZER M, NEMEC M, AFTOSMIS J M. Adjoint-based adaptive mesh refinement for sonic boom prediction:AIAA-2008-6593[R]. Reston, VA:AIAA, 2008.
[13] RALLABHANDI S K. Advanced sonic boom prediction using the augmented Burgers equation[J]. Journal of Aircraft, 2011, 48(4):1245-1253.
[14] 陈鹏, 李晓东. 基于Khokhlov-Zabolotskaya-Kuznetsov方程的声爆频域预测法[J]. 航空动力学报, 2010, 25(2):359-365. CHEN P, LI X D. Frequency domain method for predicting sonic boom propagation based on Khokhlov-Zabolotskaya-Kuznetsov equation[J]. Journal of Aerospace Power, 2010, 25(2):359-365(in Chinese).
[15] 但聃, 杨伟. 超音速公务机声爆计算与布局讨论[J]. 航空工程进展, 2012, 3(1):8-15. DAN D, YANG W. Supersonic business jet sonic boom computation and layout discussion[J]. Advances in Aeronautical Science and Engineering, 2012, 3(1):8-15(in Chinese).
[16] 冯晓强. 声爆计算方法研究及在超声速客机设计的应用[D]. 西安:西北工业大学, 2012:9-24. FENG X Q. The research of sonic boom prediction method and application in supersonic aircraft design[D]. Xi'an:Northwestern Polytechnical University, 2012:9-24(in Chinese).
[17] 冯晓强, 宋笔锋, 李占科, 等. 超声速飞机低声爆布局混合优化方法研究[J]. 航空学报, 2013, 34(8):1768-1777. FENG X Q, SONG B F, LI Z K, et al. Hybrid optimization approach research for low sonic boom supersonic aircraft configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1768-1777(in Chinese).
[18] CHOI S, ALONSO J J, KROO M I. Multi-fidelity design optimization of low-boom supersonic business jets:AIAA-2004-4371[R]. Reston, VA:AIAA, 2004.
[19] CHAN K M. Supersonicaircraft optimization for minimizing drag and sonic boom[D]. Palo Alto:Stanford University, 2003:48-96.
[20] FARHAT C, MAUTE K, ARGROW B, et al. Shape optimization methodology for reducing the sonic boom initial pressure rise[J]. AIAA Journal, 2007, 45(5):1007-1018.
[21] AFTOSMIS M J, NEMEC M, CLIFF S E. Adjoint-based low-boom design with Cart3D:AIAA-2011-3500[R]. Reston, VA:AIAA, 2011.
[22] WINTZER M, KROO I. Optimization and adjoint-based CFD for the conceptual design of low sonic boom aircraft:AIAA-2012-0963[R]. Reston, VA:AIAA, 2012.
[23] RALLABHANDI K S. Sonic boom adjoint methodology and its applications:AIAA-2011-3497[R]. Reston, VA:AIAA, 2011.
[24] RALLABHANDI K S. Application of adjoint methodology to supersonic aircraft design using reversed equivalent areas[J]. Journal of Aircraft, 2014, 51(6):1873-1882.
[25] MINELLI A, SALAH E D I, CARRIER G. Advancedoptimization approach for supersonic low-boom design:AIAA-2012-2168[R]. Reston, VA:AIAA, 2012.
[26] LI J H, TIM W, RAMESH K A. Shapeoptimization of supersonic bodies to reduce sonic boom signature:AIAA-2016-3432[R]. Reston, VA:AIAA, 2016.
[27] LI J H, KRAMPF J, MITCHELL J, et al. Prediction,minimization and propagation of sonic boom from supersonic bodies:AIAA-2017-0277[R]. Reston, VA:AIAA, 2017.
[28] CARLSON H W, MACK R J, MORRIS O A. A wind tunnel investigation of the effect of body shape on sonic boom pressure distributions:NASA TN D-3106[R]. Washington, D.C.:NASA, 1965.
[29] 韩忠华. Kriging模型及代理优化算法研究新进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[30] GIUNTA A A, WOJTKIEWICZ J S F, ELDRED M S. Overview of modern design of experiments methods for computational simulations:AIAA-2003-649[R]. Reston, VA:AIAA, 2003.
[31] KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Chemical Metallurgical & Mining Society of South Africa, 1951, 52(6):119-139.
[32] HAN Z H, GOERTZ S. Hierarchical kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(5):1285-1296.
[33] HAN Z H, ZHANG Y, SONG C X, et al. Weighted gradient-enhanced kriging for high-dimensional surrogate modeling and design optimization[J]. AIAA Journal, 2017, 55(12):4330-4346.
[34] FORRESTER A I J, KEANE A J. Recentadvances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1):50-79.
[35] JONES D R. Ataxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21(4):345-383.
[36] LIU J, SONG W P, HAN Z H, et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural and Multidisciplinary Optimization, 2016, 55(3):925-943.
[37] HAN Z H. SurroOpt a generic surrogate-based optimization code for aerodynamic and multidisciplinary design:ICAS-2016-0281[R]. Bonn:ICAS, 2016.
[38] GILL P E, MURRAY W. NPSOL:AFORTRAN package for nonlinear programming[EB/OL]. (2013-07-15)[2016-07-20]. http://www.sbsi-sol-optimize.com.
[39] AFTOSMIS M J, NEMEC M. Cart3D simulations for the first AIAA sonic boom prediction workshop:AIAA-2014-0558[R]. Reston, VA:AIAA, 2014.
[40] DAGRAU F, LOSEILLE A, SALAH E D I. Computational and experimental assessment of models for the first AIAA sonic boom prediction workshop using high fidelity CFD methods with mesh adaptation:AIAA-2014-2009[R]. Reston, VA:AIAA,2014.
[41] HUNTON W L, HICKS M R, MENDOZA P J. Some effects of wing planform on sonic boom:NASA TN D-7160[R]. Washington, D.C.:NASA, 1973.
[42] MA P B, WANG G, REN J, et al. Near field sonic boom analysis with HUNS3D solver:AIAA-2017-0038[R]. Reston, VA, AIAA, 2017.
Outlines

/