Solid Mechanics and Vehicle Conceptual Design

Distributed vibration control for large satellite solar panels

  • WANG Enmei ,
  • WU Shu'nan ,
  • WANG Xiaoming ,
  • WU Zhigang
Expand
  • 1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China;
    2. School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China

Received date: 2017-06-05

  Revised date: 2017-10-24

  Online published: 2017-10-24

Supported by

National Natural Science Foundation of China (11502040, 11432010)

Abstract

To deal with the issues such as complex design, difficult on-orbit expansion, and limited fault-tolerance in active controller of vibration of Large Satellite Solar Panels (LSSP), a distributed vibration control approach, which is suitable for the modular structure, is proposed in this paper. According to the structure characteristics of the panel, the LSSP is firstly divided into different units for control system design, and the dynamic model of each unit oriented towards distributed control is developed. The linear quadratic vibration controller of each unit is then designed using the Kalman filter algorithm. Considering the communication of the measured output of each unit, the final distributed vibration control system applied to the whole LSSP is proposed, and stability of the closed-loop system is analyzed. Simulations are finally conducted to verify the validity of the proposed controllers, and the results demonstrate that scalable distributed controllers can achieve vibration suppression for LSSP, and can provide good fault tolerance.

Cite this article

WANG Enmei , WU Shu'nan , WANG Xiaoming , WU Zhigang . Distributed vibration control for large satellite solar panels[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(1) : 221479 -221479 . DOI: 10.7527/S1000-6893.2017.21479

References

[1] BALAS M. Trends in large space structure control theory:Fondest hopes, wildest dreams[J]. IEEE Transactions on Automatic Control, 1982, 27(3):522-535.[2] HU Q L, MA G F, LI C J. Active vibration control of a flexible plate structure using LMI-based H output feedback control law[C]//World Congress on Intelligent Control and Automation, 2004. Piscataway, NJ:IEEE Press, 2004:738-742.[3] KAR I N, MIYAKURA T, SETO K. Bending and torsional vibration control of a flexible plate structure using H-based robust control law[J]. IEEE Transactions on Control Systems Technology, 2000, 8(3):545-553.[4] LUO Y J, XU M L, YAN B, et al. PD control for vibration attenuation in Hoop truss structure based on a novel piezoelectric bending actuator[J]. Journal of Sound and Vibration, 2015, 339:11-24.[5] HU Q, JIA Y H, XU S J. Adaptive suppression of linear structural vibration using control moment gyroscopes[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):990-996.[6] 许睿, 李东旭. 柔性太阳能帆板振动变论域自适应模糊控制[J]. 上海航天, 2012, 29(6):11-15. XU R, LI D X. Vibration control of flexible solar panel based on variable universe adaptive fuzzy control[J]. Aerospace Shanghai, 2012, 29(6):11-15(in Chinese).[7] 苗双全, 丛炳龙, 刘向东. 基于输入成形的挠性航天器自适应滑模控制[J]. 航空学报, 2013, 34(8):1906-1914. MIAO S Q, CONG B L, LIU X D. Adaptive sliding mode control of flexible spacecraft on input shaping[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1906-1914(in Chinese).[8] 蒋建平, 李东旭. 智能太阳翼有限元建模与振动控制研究[J]. 动力学与控制学报, 2009, 7(2):164-170. JIANG J P, LI D X. Research of finite element modelling and vibration control for smart solar array[J]. Journal of Dynamics and Control, 2009, 7(2):164-170(in Chinese).[9] 李东旭. 大型挠性结构分散化振动控制——理论与方法[M]. 3版. 北京:科学出版社, 2013:15-16. LI D X. Decentralized vibration control of large flexible structures:Theories and methods[M]. 3rd ed. Beijing:Science Press, 2013:15-16(in Chinese).[10] 王晓明, 周文雅, 吴志刚. 压电纤维复合材料驱动的机翼动态形状控制[J]. 航空学报, 2017, 38(1):159-167. WANG X M, ZHOU W Y, WU Z G. Dynamic shape control of wings using piezoelectric fiber composite materials[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):159-167(in Chinese).[11] PROWALD S J, BAIER H. Advances in deployable structures and surfaces for large apertures in space[J]. CEAS Space Journal, 2013, 5(3-4):89-115.[12] 沈晓凤, 曾令斌, 靳永强, 等. 在轨组装技术研究现状与发展趋势[J]. 载人航天, 2017, 23(2):228-235. SHEN X F, ZENG L B, JIN Y Q, et al. Status and prospect of on-bit assembly technoly[J]. Manned Spaceflight, 2017, 23(2):228-235(in Chinese).[13] DORSEY J, WATSON J. Space Assembly of Large Structural System Architectures (SALSSA)[C]//AIAA SPACE 2016. Reston, VA:AIAA, 2016:1-18.[14] GARDONIO P, BIANCHI E, ELLIOTT S J. Smart panel with multiple decentralized units for the control of sound transmission. Part I:Theoretical predictions[J]. Journal of Sound and Vibration, 2004, 274(1-2):163-192.[15] GARDONIO P, BIANCHI E, ELLIOTT S J. Smart panel with multiple decentralized units for the control of sound transmission. Part Ⅱ:Design of the decentralized control units[J]. Journal of Sound and Vibration, 2004, 274(1-2):193-213.[16] GARDONIO P, BIANCHI E, ELLIOTT S J. Smart panel with multiple decentralized units for the control of sound transmission. Part Ⅲ:Control system implementation[J]. Journal of Sound and Vibration, 2004, 274(1-2):215-232.[17] LI D X, XU R. Autonomous decentralized intelligent vibration control for large split-blanket solar arrays[J]. Science China Technological Sciences, 2013, 56(3):703-712.[18] JIANG J P, LI D X. Optimal placement and decentralized robust vibration control for spacecraft smart solar panel structures[J]. Smart Materials and Structures, 2010, 19(8):085020.[19] LI D X, LIU W, JIANG J P, et al. Placement optimization of actuator and sensor and decentralized adaptive fuzzy vibration control for large space intelligent truss structure[J]. Science China Technological Sciences, 2011, 54(4):853-861.[20] QIU Z C, ZHANG X M, WU H X, et al. Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate[J]. Journal of Sound and Vibration, 2007, 301(3-5):521-543.[21] NYE T W, MANNING R A, QASSIM K. Performance of active vibration control technology:The ACTEX flight experiments[J]. Smart Materials and Structures, 1999, 8(6):767-780[22] 陈亚梅. 基于形状记忆合金的太阳帆板的变结构控制[J]. 机械制造与自动化, 2009, 38(3):6-9. CHEN Y M. Variable structure control of solar panels based on shape memory alloy[J]. Machine Building and Automation, 2009, 38(3):6-9(in Chinese).[23] FAZELZADEH S A, JAFARI S M. Active control law design for flutter suppression and gust alleviation of a panel with piezoelectric actuators[J]. Smart Materials and Structures, 2008, 17(3):035013.[24] LI F M, SONG Z G. Flutter and thermal buckling control for composite laminated panels in supersonic flow[J]. Journal of Sound and Vibration, 2013, 332(22):5678-5695.[25] 檀盼龙, 孙青林, 高海涛, 等. 动力翼伞系统空投风场的辨识与应用[J]. 航空学报, 2016, 37(7):2286-2294. TAN P L, SUN Q L, GAO H T, et al. Wind identification and application of powered parafoil system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2286-2294(in Chinese).[26] 赵洲, 黄攀峰, 陈路. 一种融合卡尔曼滤波的改进时空上下文跟踪算法[J]. 航空学报, 2017, 38(2):274-284. ZHAO Z, HUANG P F, CHEN L. A tracking algorithm of improved spatio-temporal context with Kalman filter[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):274-284(in Chinese).[27] 段广仁. 线性系统理论[M]. 2版. 哈尔滨:哈尔滨工业大学出版社, 2004:240-246. DUAN G R. Linear systems theory[M]. 2nd ed. Harbin:Harbin Institute of Technology Press, 2004:240-246(in Chinese).[28] 秦永元, 张洪, 汪叔华. 卡尔曼滤波与组合导航原理[M]. 西安:西北工业大学出版社, 1998:20-24, 33-37. QIN Y Y, ZHANG H, WANG S H. Kalman filting and theory of integrated navigation system[M]. Xi'an:Northwestern Polytechnical University Press, 1998:20-24, 33-37(in Chinese).[29] 周舟, 陆秋海, 任革学, 等. 低密频太阳能帆板动力学参数在轨辨识和振动控制[J]. 工程力学, 2004, 21(3):84-89. ZHOU Z, LU Q H, REN G X, et al. On-orbit indentification and vibration control for solar arrays with low and close frequencies[J]. Engineering Mechanics, 2004, 21(3):84-89(in Chinese).
Outlines

/