Fluid Mechanics and Flight Mechanics

A conservative interpolation method for overset mesh via super mesh

  • CUI Pengcheng ,
  • TANG Jing ,
  • LI Bin ,
  • MA Mingsheng ,
  • DENG Youqi
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2017-07-03

  Revised date: 2017-10-10

  Online published: 2017-10-10

Abstract

Conservative interpolation of the overset mesh interface is still a challenge for CFD. Based on the supermesh technology and the centre-based finite volume method, a new conservative interpolation method for the hybrid overset mesh is developed. The cell-cut algorithm is used to build the local supermesh in the overset grid interface, and the mesh intersection method is employed to expand the number of donor cells reasonably. Then, a conservative interpolation method which applies implicit parallel algorithm is built, which is suitable for arbitrary polyhedral grids. Flow field variables can be interpolated conservatively in overset meshes with second-order accuracy via the local supermesh. Numerical results show that the method proposed is strictly conservative for second-order distributed flow field variables. Compared with the trilinear interpolation method and the reverse distance-weighted interpolation method, the proposed method can reduce the numerical errors, interpolate the variables more accurately, accelerate the convergence process of the residual error, and improve the continuity and smoothness of the flow field contour when the mesh scale matches badly at the interface.

Cite this article

CUI Pengcheng , TANG Jing , LI Bin , MA Mingsheng , DENG Youqi . A conservative interpolation method for overset mesh via super mesh[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(3) : 121569 -121569 . DOI: 10.7527/S1000-6893.2017.21569

References

[1] 李鹏, 高振勋, 蒋崇文. 重叠网格方法的研究进展[J]. 力学与实践, 2014, 36(5):551-565. LI P, GAO Z X, JIANG C W. The progress of the overlapping grid techniques[J]. Mechanics in Engineering, 2014, 36(5):551-565(in Chinese).
[2] SHIH T I P. Overset grids:Fundamentals and practical issues:AIAA-2002-3259[R]. Reston, VA:AIAA, 2002.
[3] 田书玲, 伍贻兆, 夏健. 用动态非结构重叠网格法模拟三维多体相对运动绕流[J]. 航空学报, 2007, 28(1):46-51. TIAN S L, WU Y Z, XIA J. Simulation of flows past multi-body in relative motion with dynamic unstructured overset grid method[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):46-51(in Chinese).
[4] 伍贻兆, 田书玲, 夏健. 基于非结构动网格的非定常流数值模拟方法[J]. 航空学报, 2011, 32(1):15-26. WU Y Z, TIAN S L, XIA J. Unstructured grid methods for unsteady flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):15-26(in Chinese).
[5] MARSTIN C, MCCONNAUGHEY H. Computational problems on composite grids:AIAA-1984-1611[R]. Reston, VA:AIAA, 1984.
[6] KANG Z L, YAN C, YU J, et al. A fast and reliable overset unstructured grids approach[J]. Acta Mechanica Sinica, 2013, 29(2):149-157.
[7] 黄宇, 阎超, 王文, 等. 混合重叠网格插值方法的改进及应用[J]. 北京航空航天大学学报, 2017, 43(2):285-292. HUANG Y, YAN C, WANG W, et al. An improved interpolation method for hybrid overset grid and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2):285-292(in Chinese).
[8] 周乃春, 李彬, 郑鸣, 等. 带控制率导弹投放数值模拟[J]. 空气动力学学报, 2013, 31(3):107-115. ZHOU N C, LI B, ZHENG M, et al. Missile separation simulation with control laws[J]. Acta Aerodynamica Sinica, 2013, 31(3):107-115(in Chinese).
[9] FARRELL P E, PIGGOTT M D, PAIN C C, et al. Conservative interpolation between unstructured meshes via supermesh construction[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(33):2632-2642.
[10] ZHENG Y, LIOU M S. Progress in the three-dimensional DRAGON grid scheme:AIAA-2001-2540[R]. Reston, VA:AIAA, 2001.
[11] XU K, SUN G, CAI J Y. On interface conservative attributions for computations of the complex flows of high-lift system based on chimera tech-nique[C]//Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on IEEE. Piscataway, NJ:IEEE Press, 2010:279-283.
[12] 张宇飞, 陈海昕, 符松. 基于高阶守恒重映对窗口嵌入技术的改进[J]. 计算物理, 2011, 28(2):167-173. ZHANG Y F, CHEN H X, FU S. Improvement on window embedment technology with high order conservative remapping[J]. Chinese Journal of Computational Physics, 2011, 28(2):167-173(in Chinese).
[13] ZHAO X, GUAN H W, YANG Z, et al. An implicit and globally conservative unstructured chimera grid method:AIAA-2011-0777[R]. Reston, VA:AIAA, 2011.
[14] FARRELL P E, MADDISON J R. Conservative interpolation between volume meshes by local Galerkin projection[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(1):89-100.
[15] MENON S, SCHMIDT D P. Conservative interpolation on unstructured polyhedral meshes:An extension of the supermesh approach to cell-centered finite-volume variables[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(41):2797-2804.
[16] 徐春光, 董海波, 刘君. 基于单元相交的混合网格精确守恒插值方法[J]. 爆炸与冲击, 2016, 36(3):305-312. XU C G, DONG H B, LIU J. An accurate conservative interpolation method for mixed grid based on the intersection of grid cells[J]. Explosion and Shock Waves, 2016, 36(3):305-312(in Chinese).
[17] 崔鹏程, 邓有奇, 唐静, 等.基于伴随方程的网格自适应及误差修正技术[J].航空学报, 2016,37(10):2992-3002. CUI P C, DENG Y Q, TANG J, et al. Adjoint-based grid adaptation and error correction[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):2992-3002(in Chinese).
[18] BLAZEK J. Computational fluid dynamics:principles and applications[M]. 3rd ed. Oxford:Elsevier, 2015:75-120.
[19] KIM J S, KWON O J. Improvement on block LU-SGS scheme for unstructured mesh Navier-Stokes computations:AIAA-2002-1061[R]. Reston, VA:AIAA, 2002.
[20] SPALART S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992.
[21] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.
[22] 李彬, 唐静, 邓有奇, 等. 并行的多重网格方法在离散伴随优化中的应用[J]. 航空学报, 2014, 35(8):2091-2101. LI B, TANG J, DENG Y Q, et al. Application of parallel multigrid algorithm to discrete adjoint optimization[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2091-2101(in Chinese).
[23] BEATRICE R, JAY S. Robust and scalable overset grid assembly for partitioned unstructured meshes:AIAA-2013-0797[R]. Reston, VA:AIAA, 2013.
[24] THEOHARIS T, IAN P. Two parallel methods for polygon clipping[J]. Computer Graphics Forum, 2010, 8(2):107-114.
[25] MARTINEZ F, RUEDA A J, FEITO F R. A new algorithm for computing Boolean operations on polygons[J]. Computers & Geosciences, 2009, 35(6):1177-1185.
[26] 唐静, 邓有奇, 马明生, 等. 飞翼气动优化中参数化和网格变形技术研究[J]. 航空学报, 2015, 36(5):1480-1490. TANG J, DENG Y Q, MA M S, et al. Parametrization and grid deformation techniques for fly-wing shape optimization[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1480-1490(in Chinese).
[27] ALAUZET F, MEHRENBERGER M. P1-conservative solution interpolation on unstructured triangular meshes[J]. International Journal for Numerical Methods in Engineering, 2010, 84(13):1552-1588.
[28] GARIMELLA R, KUCHARIK M, SHASHKOV M. An efficient linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes[J]. Computers & Fluids, 2007, 36(2):224-237.
[29] MAYEUR J, DUMONT A, DESTARAC D, et al. RANS simulations on TMR test cases and M6 wing with the ONERA elsA flow solver:AIAA-2015-1745[R]. Reston, VA:AIAA, 2015.
[30] DURRANI N, QIN N. Comparison of RANS, DES and DDES results for ONERA M6 wing at transonic flow speed using an in-house parallel code:AIAA-2011-0190[R]. Reston, VA:AIAA, 2011.
[31] DA SILVA R G, AZEVEDO J L F, BASSO E. Simulation of ONERA M6 wing flows for assessment of turbulence modeling capabilities:AIAA-2016-0549[R]. Reston, VA:AIAA, 2016.
[32] SAXENA S K, NAIR M T. Implementation and testing of Spalart-Allmaras model in a multi-block code:AIAA-2002-0835[R]. Reston, VA:AIAA, 2002.
[33] LUO H, BAUM J D, LÖHNER R. A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids[J]. Journal of Computational Physics, 2007, 225(1):686-713.
[34] HEIM E R. CFD wing/pylon/finned store mutual interference wind tunnel experiment:AEDC-TSR-91-P4[R]. New York:AEDC, 1991.
Outlines

/