[1] GUO Z Y, LI D Y, WANG B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14):2221-2225.[2] GUO Z Y. Mechanism and control of convective heat transfer-Coordination of velocity and heat flow fields[J]. Chinese Science Bulletin, 2001, 46(1):596-599.[3] GUO Z Y, TAO W Q, SHAH R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer[J]. International Journal of Heat and Mass Transfer, 2005, 48(9):1797-1807.[4] 李志信, 过增元. 对流传热优化的场协同理论[M]. 北京:科学出版社, 2010:54-77. LI Z X, GUO Z Y. Field synergy theory for convective heat transfer optimization[M]. Beijing:Science Press, 2010:54-77(in Chinese).[5] TAO W Q, GUO Z Y, WANG B X. Field synergy principle for enhancing convective heat transfer-Its extension and numerical verification[J]. International Journal of Heat and Mass Transfer, 2002, 45(18):3849-3856.[6] 王娴, 宋富强, 屈治国, 等. 场协同理论在椭圆型流动中的数值验证[J]. 工程热物理学报, 2002, 23(1):59-62. WANG X, SONG F Q, QU Z G, et al. Numerical verification of the field synergy principle in the elliptic fluid flow[J]. Journal of Engineering Thermophysics, 2002, 23(1):59-62(in Chinese).[7] 陈群, 任建勋, 过增元. 流体流动场协同原理及其在减阻中的应用[J]. 科学通报, 2008, 53(4):489-492. CHEN Q, REN J X,GUO Z Y.Fluid flow field synergy principle and it's application in drag reduction[J]. Chinese Science Bulletin, 2008, 53(4):489-492(in Chinese).[8] WANG S P, CHEN Q L, ZHANG B J, et al. A general theoretical principle for single-phase convection heat transfer enhancement[J]. Science in China Series E:Technological Sciences, 2009, 52(12):3521-3526.[9] 刘伟, 刘志春, 过增元. 对流换热层流流场的物理量协同与传热强化分析[J]. 科学通报, 2009, 54(12):1779-1785. LIU W, LIU Z C, GUO Z Y. Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement[J]. Chinese Science Bulletin, 2009, 54(12):1779-1785(in Chinese).[10] 刘伟, 刘志春, 过增元. 湍流换热的场物理量协同与传热强化分析[J]. 科学通报, 2010, 55(3):181-288. LIU W, LIU Z C, GUO Z Y. Physical quantity synergy in the field of turbulent heat transfer and its analysis for heat transfer enhancement[J]. Chinese Science Bulletin, 2010, 55(3):181-288(in Chinese).[11] 何雅玲, 陶文铨. 强化单相对流换热的基本机制[J]. 机械工程学报, 2009, 45(3):27-38. HE Y L, TAO W Q. Fundamental mechanism of enhancing single-phase convective heat transfer[J]. Journal of Mechanical Engineering, 2009, 45(3):27-38(in Chinese).[12] LI Y, LIU G, RAO Z, et al. Field synergy principle analysis for reducing natural convection heat loss of a solar cavity receiver[J]. Renewable Energy, 2015, 75(1):257-265.[13] ZHU X W, ZHAO J Q. Improvement in field synergy principle:More rigorous application, better results[J]. International Journal of Heat and Mass Transfer, 2016, 100(1):347-354.[14] ZHAI Y, LI Z, WANG H, et al. Analysis of field synergy principle and the relationship between secondary flow and heat transfer in double-layered microchannels with cavities and ribs[J]. International Journal of Heat and Mass Transfer, 2016, 101(1):190-197.[15] HE Y L, TAO W Q. Convective heat transfer enhancement:Mechanisms, techniques, and performance evaluation[J]. Advances in Heat Transfer, 2014, 46:87-186.[16] 李书, 王黎, 吴烁, 等. 面向飞/发一体化设计的高温尾喷口流场分析[J]. 航空学报, 2016, 37(1):364-370. LI S, WANG L, WU S, et al. Analysis of high temperature nozzle exhaust flow towards aircraft-engine integrated design[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):364-370(in Chinese).[17] 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7):020844. GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):020844(in Chinese).[18] PANTON R L. Incompressible flow[M]. 4th ed. New York:John Wiley & Sons, 2013:213-218.[19] POPE S B. Turbulent flows[M]. New York:Cambridge University Press, 2001:18-20.[20] HANIFI A, ALFREDSSON P H, JOHANSSON A V, et al. Transition, turbulence and combustion modelling[M]. Berlin:Springer Science & Business Media, 1998:245-249.[21] WHITE F M. Viscous fluid flow[M]. 3rd ed. New York:McGraw-Hill, 2006:44-74, 227-228, 505-507.[22] 朗道, 栗弗席兹. 流体动力学[M]. 五版. 李植, 译. 北京:高等教育出版社, 2013:12-14. LANDAU L D, LIFSCITZ E M. Fluid dynamics[M]. 5th ed. LI Z, translated. Beijing:Higher Education Press, 2013:12-14(in Chinese).[23] SPINA E F, SMITS A J, ROBINSON S K. The physics of supersonic turbulent boundary layers[J]. Annual Review of Fluid Mechanics, 1994, 26:287-319.[24] 过增元. 对流换热的物理机制及其控制:速度场与热流畅的协同[J]. 科学通报, 2000, 45(19):2118-2122. GUO Z Y. Mechanism of convective heat transfer and its control[J]. Chinese Science Bulletin, 2000, 45(19):2118-2122(in Chinese).[25] 过增元, 黄素逸. 场协同原理与强化传热新技术[M]. 北京:中国电力出版社, 2004:1-15. GUO Z Y, HUANG S Y. Field synergy principle and heat transfer enhancement new technology[M]. Beijing:China Electric Power Press, 2004:1-15(in Chinese).[26] 刘景源, 李椿萱. 高超声速二方程湍流模型的数值模拟对比[J]. 北京航空航天大学学报, 2007, 33(10):1131-1135. LIU J Y, LEE C X. Comparison of two-equation turbulent models for hypersonic flow simulations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10):1131-1135(in Chinese).[27] 刘景源. SST湍流模型在高超声速绕流中的改进[J]. 航空学报, 2012, 33(12):2192-2201. LIU J Y. An improved shear stress transport (SST) turbulence model for hypersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2192-2201(in Chinese).[28] LI S X, CHEN Y K, LI Y L. Hypersonic flow over double-ellipsoid-Experimental investigation:AIAA-1997-2287[R].Reston, VA:AIAA, 1997.[29] HARRIS W. Aerospace planes and hypersonic technologies an overview for the United States:AIAA-1993-5157[R]. Reston, VA:AIAA, 1993.[30] 徐华舫. 空气动力学基础(下册)[M]. 北京:国防工业出版社, 1982:45-47. XU H F. Fundamentals of aerodynamics (Volume Ⅱ)[M]. Beijing:National Defense Industry Press, 1982:45-47(in Chinese).