Fluid Mechanics and Flight Mechanics

Extension of field synergy principle for convective heat transfer to high speed compressible boundary-layer flows

  • LIU Jingyuan
Expand
  • Aircraft Engineering College, Nanchang Hangkong University, Nanchang 330063, China

Received date: 2017-05-17

  Revised date: 2017-10-09

  Online published: 2017-10-10

Supported by

National Natural Science Foundation of China (11102079, 11562012)

Abstract

The field synergy principle for incompressible convective heat transfer is extended to high speed compressible laminar and turbulent flows based on theoretical analysis. The result shows the convective heat transfer of compressible laminar and turbulent flows is determined by the synergy between the local momentum per unit volume and the gradient of total enthalpy, different from the field synergy principle for incompressible convective heat transfer. The principle based on the synergy between the local momentum per unit volume and the gradient of total enthalpy can be applied to the problem of heat transfer of the wall. For laminar flows, not only the effect of the change of density for high speed flows is taken into account, but the effect of the gradient of static enthalpy, the pressure gradient and the molecular viscosity near the wall on the heat flux is also considered. For high speed turbulent flows, besides the effect of the change of density, the gradient of static enthalpy, the pressure gradient and the molecular viscosity near the wall on the heat flux, the Reynolds shear stress is also contained. In addition, for the incompressible convective heat transfer flows that the viscous effect cannot be neglected, the result of the present study also indicates that it is more accurate to express the synergy with velocity vector and gradient of total temperature or total enthalpy.

Cite this article

LIU Jingyuan . Extension of field synergy principle for convective heat transfer to high speed compressible boundary-layer flows[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(1) : 121429 -121429 . DOI: 10.7527/S1000-6893.2017.21429

References

[1] GUO Z Y, LI D Y, WANG B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14):2221-2225.[2] GUO Z Y. Mechanism and control of convective heat transfer-Coordination of velocity and heat flow fields[J]. Chinese Science Bulletin, 2001, 46(1):596-599.[3] GUO Z Y, TAO W Q, SHAH R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer[J]. International Journal of Heat and Mass Transfer, 2005, 48(9):1797-1807.[4] 李志信, 过增元. 对流传热优化的场协同理论[M]. 北京:科学出版社, 2010:54-77. LI Z X, GUO Z Y. Field synergy theory for convective heat transfer optimization[M]. Beijing:Science Press, 2010:54-77(in Chinese).[5] TAO W Q, GUO Z Y, WANG B X. Field synergy principle for enhancing convective heat transfer-Its extension and numerical verification[J]. International Journal of Heat and Mass Transfer, 2002, 45(18):3849-3856.[6] 王娴, 宋富强, 屈治国, 等. 场协同理论在椭圆型流动中的数值验证[J]. 工程热物理学报, 2002, 23(1):59-62. WANG X, SONG F Q, QU Z G, et al. Numerical verification of the field synergy principle in the elliptic fluid flow[J]. Journal of Engineering Thermophysics, 2002, 23(1):59-62(in Chinese).[7] 陈群, 任建勋, 过增元. 流体流动场协同原理及其在减阻中的应用[J]. 科学通报, 2008, 53(4):489-492. CHEN Q, REN J X,GUO Z Y.Fluid flow field synergy principle and it's application in drag reduction[J]. Chinese Science Bulletin, 2008, 53(4):489-492(in Chinese).[8] WANG S P, CHEN Q L, ZHANG B J, et al. A general theoretical principle for single-phase convection heat transfer enhancement[J]. Science in China Series E:Technological Sciences, 2009, 52(12):3521-3526.[9] 刘伟, 刘志春, 过增元. 对流换热层流流场的物理量协同与传热强化分析[J]. 科学通报, 2009, 54(12):1779-1785. LIU W, LIU Z C, GUO Z Y. Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement[J]. Chinese Science Bulletin, 2009, 54(12):1779-1785(in Chinese).[10] 刘伟, 刘志春, 过增元. 湍流换热的场物理量协同与传热强化分析[J]. 科学通报, 2010, 55(3):181-288. LIU W, LIU Z C, GUO Z Y. Physical quantity synergy in the field of turbulent heat transfer and its analysis for heat transfer enhancement[J]. Chinese Science Bulletin, 2010, 55(3):181-288(in Chinese).[11] 何雅玲, 陶文铨. 强化单相对流换热的基本机制[J]. 机械工程学报, 2009, 45(3):27-38. HE Y L, TAO W Q. Fundamental mechanism of enhancing single-phase convective heat transfer[J]. Journal of Mechanical Engineering, 2009, 45(3):27-38(in Chinese).[12] LI Y, LIU G, RAO Z, et al. Field synergy principle analysis for reducing natural convection heat loss of a solar cavity receiver[J]. Renewable Energy, 2015, 75(1):257-265.[13] ZHU X W, ZHAO J Q. Improvement in field synergy principle:More rigorous application, better results[J]. International Journal of Heat and Mass Transfer, 2016, 100(1):347-354.[14] ZHAI Y, LI Z, WANG H, et al. Analysis of field synergy principle and the relationship between secondary flow and heat transfer in double-layered microchannels with cavities and ribs[J]. International Journal of Heat and Mass Transfer, 2016, 101(1):190-197.[15] HE Y L, TAO W Q. Convective heat transfer enhancement:Mechanisms, techniques, and performance evaluation[J]. Advances in Heat Transfer, 2014, 46:87-186.[16] 李书, 王黎, 吴烁, 等. 面向飞/发一体化设计的高温尾喷口流场分析[J]. 航空学报, 2016, 37(1):364-370. LI S, WANG L, WU S, et al. Analysis of high temperature nozzle exhaust flow towards aircraft-engine integrated design[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):364-370(in Chinese).[17] 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7):020844. GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):020844(in Chinese).[18] PANTON R L. Incompressible flow[M]. 4th ed. New York:John Wiley & Sons, 2013:213-218.[19] POPE S B. Turbulent flows[M]. New York:Cambridge University Press, 2001:18-20.[20] HANIFI A, ALFREDSSON P H, JOHANSSON A V, et al. Transition, turbulence and combustion modelling[M]. Berlin:Springer Science & Business Media, 1998:245-249.[21] WHITE F M. Viscous fluid flow[M]. 3rd ed. New York:McGraw-Hill, 2006:44-74, 227-228, 505-507.[22] 朗道, 栗弗席兹. 流体动力学[M]. 五版. 李植, 译. 北京:高等教育出版社, 2013:12-14. LANDAU L D, LIFSCITZ E M. Fluid dynamics[M]. 5th ed. LI Z, translated. Beijing:Higher Education Press, 2013:12-14(in Chinese).[23] SPINA E F, SMITS A J, ROBINSON S K. The physics of supersonic turbulent boundary layers[J]. Annual Review of Fluid Mechanics, 1994, 26:287-319.[24] 过增元. 对流换热的物理机制及其控制:速度场与热流畅的协同[J]. 科学通报, 2000, 45(19):2118-2122. GUO Z Y. Mechanism of convective heat transfer and its control[J]. Chinese Science Bulletin, 2000, 45(19):2118-2122(in Chinese).[25] 过增元, 黄素逸. 场协同原理与强化传热新技术[M]. 北京:中国电力出版社, 2004:1-15. GUO Z Y, HUANG S Y. Field synergy principle and heat transfer enhancement new technology[M]. Beijing:China Electric Power Press, 2004:1-15(in Chinese).[26] 刘景源, 李椿萱. 高超声速二方程湍流模型的数值模拟对比[J]. 北京航空航天大学学报, 2007, 33(10):1131-1135. LIU J Y, LEE C X. Comparison of two-equation turbulent models for hypersonic flow simulations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10):1131-1135(in Chinese).[27] 刘景源. SST湍流模型在高超声速绕流中的改进[J]. 航空学报, 2012, 33(12):2192-2201. LIU J Y. An improved shear stress transport (SST) turbulence model for hypersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2192-2201(in Chinese).[28] LI S X, CHEN Y K, LI Y L. Hypersonic flow over double-ellipsoid-Experimental investigation:AIAA-1997-2287[R].Reston, VA:AIAA, 1997.[29] HARRIS W. Aerospace planes and hypersonic technologies an overview for the United States:AIAA-1993-5157[R]. Reston, VA:AIAA, 1993.[30] 徐华舫. 空气动力学基础(下册)[M]. 北京:国防工业出版社, 1982:45-47. XU H F. Fundamentals of aerodynamics (Volume Ⅱ)[M]. Beijing:National Defense Industry Press, 1982:45-47(in Chinese).
Outlines

/