Fluid Mechanics and Flight Mechanics

Simulation and analysis for sonic boom on several benchmark cases

  • WANG Gang ,
  • MA Boping ,
  • LEI Zhijin ,
  • REN Jiong ,
  • YE Zhengyin
Expand
  • 1. Department of Fluid Mechanics, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Department of Flight Vehicle Engineering, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2017-05-27

  Revised date: 2017-09-21

  Online published: 2017-09-21

Supported by

National Natural Science Foundation of China (11772265)

Abstract

Accurate prediction and simulation of sonic boom are of significant importance to the design of supersonic aircraft. The mainstream research approach for sonic boom prediction consists of two steps. First, the distribution of over-pressure in near field is calculated with wind tunnels or CFD, then the over-pressure is propagated to the ground by the modified linear wave equations or nonlinear Burger's equations. Using several benchmark cases, the accuracy of typical near field sonic boom prediction method is verified. For nearfield over-pressure prediction, the influence of semi-sphere radius, spatial discretization schemes and viscosity are investigated. For far-field sonic boom prediction, based on the nearfield over-pressure of LM1021 configuration, the influence of different discretization and with/without viscosity in nearfield simulation to the far-field signature prediction have been investigated. The results show that it is necessary to use semi-sphere to deal with the sharp tip in supersonic model. Using semi-sphere with reasonable radius will help guarantee the accuracy of nearfield prediction. The scale of modification will influence the shape of shock wave and the peak values of shock wave and expansion waves. For nearfield sonic boom prediction, the entropy consistent scheme performs better than the Roe and Central schemes. However, the discretization scheme has little influence on the key indicators of the far-field propagated signatures (mainly peak value of over-pressure and raise time). The effect of viscosity in the nearfield prediction is small, however, the slight difference caused by the viscosity in the nearfield domain would cause obvious difference in the far-field domain.

Cite this article

WANG Gang , MA Boping , LEI Zhijin , REN Jiong , YE Zhengyin . Simulation and analysis for sonic boom on several benchmark cases[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(1) : 121458 -121458 . DOI: 10.7527/S1000-6893.2017.21458

References

[1] 张帅, 夏明, 钟伯文. 民用飞机气动布局发展演变及其技术影响因素[J]. 航空学报, 2016, 37(1):30-44. ZHANG S, XIA M, ZHONG B W. Evolution and technical factors influencing civil aircraft aerodynamic configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):30-44(in Chinese).[2] PARK M A, AFTOSMIS M J, CAMPBELL R L, et al. Summary of the 2008 NASA fundamental aeronautics program sonic boom prediction workshop[J]. Journal of Aircraft,2014, 51(3):987-1001.[3] PARK M A, MORGENSTERN J M. Summary and statistical analysis of the first AIAA sonic boom prediction workshop[C]//32nd AIAA Aplied Aerodynamics Conference.Reston, VA:AIAA, 2014.[4] PARK M A, MARIAN N. Nearfield summary and statistical analysis of the second AIAA sonic boom prediction workshop:AIAA-2017-3256[R].Reston,VA:AIAA, 2017.[5] RALLABHANDIS K, LOUBEAU A. Summary of propagation cases of the second AIAA sonic boom prediction workshop:AIAA-2017-3257[R]. Reston,VA:AIAA, 2017.[6] CHEUNG S, EDWARDS T, LAWRENCE S. Application of CFD to sonic boom near and midfield prediction:NASA TM-102867[R].Washington,D.C.:NASA,1990.[7] SICLARI M J, DARDEN C M. An euler code prediction of near-field to midfield sonic boom pressure signatures[J]. Journal of Aircraft,1990, 30(6):911-917.[8] WHITHAM G B. The flow pattern of asupersonic projectile[J]. Communications on Pure and Applied Mathematics,1952, 5(3):301-348.[9] PAGE J A, PLOTKIN K J. An efficient method for incorporating computational fluid dynamics into sonic boom prediction:AIAA-1991-3275[R]. Reston,VA:AIAA, 1991.[10] CLIFF S E, THOMAS S D. Euler/Experiment correlations of sonic boom pressure signatures[J]. Journal of Aircraft,1993, 30(5):669-675.[11] SICLARI M J, DARDEN C M. Euler code prediction of near-field to midfield sonic boom pressure signatures[J]. Journal of Aircraft, 1993, 30(6):911-917.[12] ALONSO J, JAMESON A, KROO I. Advanced algorithms for design and optimization of quiet supersonic platforms:AIAA-2002-0144[R]. Reston,VA:AIAA, 2002.[13] MEREDITH K, DAHLIN J, GRAHAM D, et al. Computational fluid dynamics comparison and flight test measurement of F-5E off-body pressures:AIAA-2005-0006[R]. Reston,VA:AIAA, 2005.[14] LAFLIN K R, KLAUSMEYER S M, CHAFFIN M A. Hybrid computational fluid dynamics procedure for sonic boom prediction:AIAA-2006-3168[R]. Reston,VA:AIAA, 2006.[15] JONES W, NIELSEN E, PARM M. Validation of 3D adjoint based error estimation and mesh adaptation for sonic boom prediction:AIAA-2006-1150[R]. Reston,VA:AIAA, 2006.[16] OZCER I, KANDIL O. Fun3D/OptiGRID coupling for unstructured grid adaptation for sonic boom problems:AIAA-2008-0061[R]. Reston,VA:AIAA, 2008.[17] AFTOSMIS M J, NEMEC M, CLIFF S E. Adjoint-based low-boom design with Cart3D:AIAA-2011-3500[R]. Reston,VA:AIAA, 2011.[18] NEMEC M, AFTOSMIS M, WINTZER M. Adjoint-based adaptive mesh refinement for complex geometries:AIAA-2008-0075[R]. Reston,VA:AIAA, 2008.[19] WINTZER M, NEMEC M, AFTOSMIS M. Adjoint-based adaptive mesh refinement for sonic boom prediction:AIAA-2008-6593[R]. Reston,VA:AIAA, 2008.[20] GAN J Y, ZHA G C. Near field sonic boom calculation of benchmark cases:AIAA-2015-1252[R]. Reston,VA:AIAA, 2015.[21] ALAUZET F, LOSEILLE A. High-order sonic boom modeling based on adaptive methods[J]. Journal of Computational Physics, 2010, 229(3):561-593.[22] KANDIL O, YANG Z, BOBBITT P. Prediction of sonic boom signature using euler-full potential CFD with grid adaptation and shock fitting:AIAA-2002-2542[R]. Reston,VA:AIAA, 2002.[23] RALLABHANDI S K. Advanced sonic boom prediction using the augmented burgers equation[J]. Journal of Aircraft, 2011, 48(4):1245-1253.[24] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015,36(8):2507-2528. ZHU Z Q, LAN S L. Study ofsupersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2507-2528(in Chinese).[25] 陈鹏, 李晓东. 基于Khokhlov-Zabolotskaya-Kuznetsov方程的声爆频域预测法[J]. 航空动力学报, 2010, 25(2):359-365. CHEN P, LI X D. Frequency domain method for predicting sonic boom propagation based on Khokhlov-Zabolotskaya-Kuznetsov equation[J]. Journal of Aerospace Power,2010, 25(2):359-365(in Chinese).[26] 但聃, 杨伟. 超音速公务机声爆计算与布局讨论[J]. 航空工程进展, 2012, 3(1):7-15. DAN D, YANG W. Supersonic business jet sonic boom computation and layout discussion[J]. Aeronautical Science & Technology, 2012, 3(1):7-15(in Chinese).[27] 冯晓强, 李占科, 宋笔锋. 超音速客机音爆问题初步研究[J]. 飞行力学,2010, 28(6):21-23. FENG X Q, LI Z K, SONG B F. Preliminary analysis on the sonic boom of supersonic aircraft[J]. Flight Dynamics, 2010, 28(6):21-23(in Chinese).[28] 冯晓强, 李占科, 宋笔锋. 超声速客机低音爆布局反设计技术研究[J]. 航空学报, 2011, 32(11):1980-1986. FENG X Q, LI Z K, SONG B F. A research on inverse design method of a lower sonic boom supersonic aircraft configuration[J]. Acta Aeronautica et Astronautica Sinica, 2011:32(11):1980-1986(in Chinese).[29] 冯晓强, 李占科, 宋笔锋, 等. 基于混合网格的声爆/气动一体化设计方法研究[J]. 空气动力学学报, 2014, 32(1):30-37. FENG X Q, LI Z K,SONG B F, et al. Optimization of sonic boom and aerodynamic based on structured/unstructured hybrid grid[J]. Acta Aerodynamica Sinica, 2014, 32(1):30-37(in Chinese).[30] FENG X Q, LI Z K, SONG B F. Research of low boom and low drag supersonic aircraft design[J]. Chinese Journal of Aeronautics,2014, 27(3):531-541.[31] 徐悦, 宋万强. 典型低音爆构型的近场音爆计算研究[J]. 航空科学技术, 2016, 27(7):12-16. XU Y, SONG W Q. Near field sonic boom calculation on typical LSB configuration[J]. Aeronautical Science & Technology,2016, 27(7):12-16(in Chinese).[32] MA B P, WANG G, REN J,et al. Near field sonic boom analysis with HUNS3D solver:AIAA-2017-0038[R]. Reston,VA:AIAA, 2017.[33] WANG G, YE Z Y. Mixed element type unstructured grid generation and its application to viscous flow simulation[C]//24th International Congress of the Aeronautical Sciences. ICAS, 2004.[34] LI C N, YE Z Y, WANG G. Simulation of flow separation at the wing-body junction with different fairings[J]. Journal of Aircraft,2008, 45(1):258-266.[35] MIAN H H, WANG G, RAZA M A. Application and validation of HUNS3D flow solver for aerodynamic drag prediction cases[J].International Bhurban Conference on Applied Sciences and Technology, 2013,20(3):209-218.[36] ROE P L. Approximate riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.[37] LIOU M S. Ten years in the making-AUSM-family[C]//15th AIAA Computational Fluid Dynamics Conference.Reston,VA:AIAA,2013.[38] lSMAIL, FARZAD, PHILIP L. Affordable, entropy-consistent euler flux functions Ⅱ:Entropy production at shocks[J]. Journal of Computational Physics,2009, 228(15):5410-5436.[39] ZHA G C, SHEN Y, WANG B. An improved low diffusion E-CUSP upwind scheme[J]. Computers & Fluids,2011, 48(1):214-220.[40] JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the euler equations by finite volume methods using runge kutta time stepping schemes:AIAA-1981-1259[R]. Reston,VA:AIAA, 1981.[41] SPALART P, ALLMARAS S A. One-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston,VA:AIAA, 1992.[42] MENTER F R. Zonal two equation k-w turbulence models for aerodynamic flows[J]. AIAA Journal, 1993, 36(11):1975-1982.[43] THOMAS C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method:NASA TN D-6832[R].Washongton,D.C.:NASA, 1972.[44] PLOTKIN K J. Review of sonic boom theory:AIAA-1989-1105[R]. Reston,VA:AIAA, 1989.[45] CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin:The University of Texas at Austin, 1995.[46] LEATHERWOOD J D, SULLIVAN B M. Effect of sonic boom asymmetry on subjective loudness:NASA TM-107708[R].Wasington,D.C.:NASA, 1992.[47] LEATHERWOOD J D, SULLIVAN B M, SHEPHERD K P, et al. A summary of recent NASA studies of human response to sonic booms[J]. The Journal of the Acoustical Society of America, 2002, 111(1):586-598.[48] CARLSON H W, MACK R J, MORRIS O A. A wind-tunnel investigation of the effect of body shape on sonic-boom pressure distributions:NASA TN-D-3106[R].Washington,D.C.:NASA,1965.[49] HUNTON L W, HICKS R M, MENDOZA J P. Some effects of wing planform on sonic boom:NASA TN-D-7160[R].Washington,D.C.:NASA,1973.
Outlines

/