Fluid Mechanics and Flight Mechanics

Effects of propeller slipstream on aerodynamic performance of diamond joined-wing configuration UAV

  • SUN Junlei ,
  • WANG Heping ,
  • ZHOU Zhou ,
  • LEI Shan
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Aircraft Design and Research Department, AVIC Xi'an Aircraft Industry(Group) Company Ltd., Xi'an 710089, China

Received date: 2017-05-18

  Revised date: 2017-09-08

  Online published: 2017-09-08

Supported by

Civil Aircraft Project (MIZ-2015-F-009); Shannxi Province Science and Technology Project (2015KTCQ01-78)

Abstract

The aerodynamic characteristics of the low Reynolds number diamond joined-wing configuration Unmanned Aerial Vehicle (UAV) with propellers is numerically simulated by quasi-steadily solving the Reynolds Averaged Navior-Stokes (RANS) equations of Multiple Reference Frames (MRF) based on the hybrid grid technology and k-kL-ω transition model. The influence of the slipstream on the aerodynamic characteristics of the diamond joined-wing configuration UAV at different installation positions is studied by comparing the aerodynamic coefficients and the flow field characteristics of the UAV with propellers and with the clean configuration. The results show that the propeller slipstream does not always improve the lift characteristics of the UAV. The aerodynamic performance of the Aft-wing (after wing) is affected by the combination vortex formed by the propeller slipstream when the propeller is installed in the nose and Frt-wing (front wing). The effect of the propeller slipstream on the wing is also affected by the wing sweep angle and propeller rotation. Affected by layout characteristics, the propeller slipstream has a great influence on the pitching moment characteristics of the UAV when the installation position of the propeller is away from the focus.

Cite this article

SUN Junlei , WANG Heping , ZHOU Zhou , LEI Shan . Effects of propeller slipstream on aerodynamic performance of diamond joined-wing configuration UAV[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(1) : 121431 -121431 . DOI: 10.7527/S1000-6893.2017.121431

References

[1] 李博, 梁德旺, 黄国平. 基于等效盘模型的滑流对涡桨飞机气动性能的影响[J]. 航空学报, 2008, 29(4):845-852. LI B, LIANG D W, HUANG G P. Propeller slipstream effects on aerodynamic performance of turbo-prop airplane based on equivalent actuator disk model[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):845-852(in Chinese).[2] 鄂秦, 杨国伟. 螺旋桨滑流对飞机气动特性影响的数值分析[J]. 西北工业大学学报, 1997, 15(4):511-516. E Q, YANG G W. On coupling effect of two vortex systems of Chinese aircraft with turbo-propellers[J]. Journal of Northwestern Polytechnical University, 1997, 15(4):511-516(in Chinese).[3] 夏贞锋, 罗淞, 杨永. 基于激励盘理论的螺旋桨滑流数值模拟研究[J]. 空气动力学学报, 2012, 30(2):219-222. XIA Z F, LUO S, YANG Y. Numerical simulation of propeller slipstream flows using actuator disk theory[J]. Acta Aerodynamica Sinica, 2012, 30(2):219-222(in Chinese).[4] WOLKOVITCH J. The joined wing:An overview[J]. Journal of Aircraft, 1986, 23(3):161-178.[5] 刘学强, 李青, 柴建忠, 等. 盒式机翼布局气动特性研究[J]. 南京航空航天大学学报, 2008, 39(6):722-725. LIU X Q, LI Q, CHAI J Z, et al. Aerodynamic characteristic research for box-wing aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 39(6):722-725(in Chinese).[6] 李光里, 李国文, 黎军, 等. 连接翼布局气动特性研究[J]. 空气动力学学报, 2006, 24(4):513-519. LI G L, LI G W, LI J, et al. The aerodynamics investi-gation of the joined-wing configuration[J]. Acta Aerodynamica Sinica, 2006, 24(4):513-519(in Chinese).[7] 唐胜景, 刘真畅, 周运强, 等. 后翼上反串置翼无人机气动特性研究[J]. 北京理工大学学报, 2015, 35(12):1211-1216. TANG J S,LIU Z C,ZHOU Y Q, et al. Investigation on aerodynamic performance of tandem wing UAV with rear wing dihedral[J]. Transactions of Beijing Institute of Technology, 2015, 35(12):1211-1216(in Chinese).[8] 王延奎, 单继祥, 田伟, 等. 联翼布局俯仰力矩非线性变化特性的数值模拟[J]. 北京航空航天大学学报, 2012, 38(7):862-866. WANG Y K, SHAN J X, TIAN W, et al. Investigation on non-linear characteristic of pitching moment of joined wing configuration aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7):862-866(in Chinese).[9] CHANDAR D D J, DAMODARAN M. Computational study of unsteady low-Reynolds number airfoil aerodynamics using moving overlapping meshes[J]. AIAA Journal, 2008, 46(2):429-438.[10] CATALANO F M. On the effects of an installed propeller slipstream on wing aerodynamic characteristics[J]. Acta Polytechnica, 2004, 44(3):8-14.[11] EHAB A E, COLIN P B. Experimental investigation of the effect of propeller slipstream on boundary layer behavior at low Reynolds number:AIAA-2000-4123[R]. Reston, VA:AIAA, 2000.[12] 王科雷, 祝小平, 周洲, 等. 低雷诺数分布式螺旋桨滑流气动影响[J]. 航空学报, 2016, 37(9):2669-2678. WANG K L, ZHU X P, ZHOU Z, et al. A study of distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2669-2678(in Chinese).[13] 夏贞锋, 杨永. 螺旋桨滑流与机翼气动干扰的非定常数值模拟[J]. 航空学报, 2011, 32(7):1195-1201. XIA Z F, YANG Y. Unsteady numerical simulation of interaction effects of propeller and wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1195-1201(in Chinese).[14] WALTERS D K, COKLJAT D. A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow[J]. Journal of Fluids Engineering, 2008, 130(12):1-14.[15] 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11):2910-2920. XU J K, BAI J Q, HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2910-2920(in Chinese).[16] 陈广强, 白鹏, 詹慧玲, 等. 一种推进式螺旋桨无人机滑流效应影响研究[J]. 空气动力学学报, 2015, 33(4):554-562. CHEN G Q, BAI P, ZHAN H L, et al. Numerical simulation study on propeller slipstream effect on unmanned air vehicle with propeller engine[J]. Acta Aerodynamica Sinica, 2015, 33(4):554-562(in Chinese).[17] GREGORY A W, BRYAN D M, BENJAMIN A B, et al. Summary of low-speed airfoil date-Vol.5[M]. Illinois:University of Illinois at Urbana-Champaign, 2012.[18] KONING C. Influence of the propeller on other parts of the airplane structure[M]//Aerodynamic Theory. Berlin Heidelberg:Springer, 1935:402-420.[19] 刘沛清, 王亚平, 刘杰, 等. 近距耦合鸭式布局复杂涡系的干扰机理[J]. 北京航空航天大学学报, 2012, 38(7):873-881. LIU P Q, WANG Y P, LIU J, et al. Vortex interaction mechanism over close-coupled canard configuration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7):873-881(in Chinese).[20] 马宝峰, 刘沛清, 邓学蓥. 近距耦合鸭式布局气动研究进展[J]. 空气动力学学报, 2003, 21(3):320-329. MA B F, LIU P Q, DENG X Y. Research advances on a close-coupled canard wing configuration[J]. Acta Aero-dynamica Sinica, 2003, 21(3):320-329(in Chinese).[21] 段中喆, 刘沛清. 某型螺旋桨滑流对机翼气动性能影响的数值研究[J]. 应用基础与工程科学学报, 2012(S1):215-225. DUAN Z J, LIU P Q. Numerical researches on the aerodynamic characteristics of a wing influenced by the slipstream of propellers[J]. Journal of Basic Science and Engineering, 2012(S1):215-225(in Chinese).
Outlines

/