Electronics and Electrical Engineering and Control

Path optimization algorithm for AFDX virtual link to balance the network risk

  • ZHAO Changxiao ,
  • HE Feng ,
  • YAN Fang ,
  • WANG Peng ,
  • XIONG Huagang
Expand
  • 1. Civil Aircraft Airworthiness and Repair Key Laboratory, Tianjin Civil Aviation University of China, Tianjin 300300, China;
    2. School of Electronic Information Engineering, Beihang University, Beijing 100191, China

Received date: 2017-05-18

  Revised date: 2017-08-31

  Online published: 2017-08-31

Supported by

Joint Fund of the National Natural Science Foundation of China and the Civil Aviation Administration of China (U1533105); National Basic Research Program of China (2014CB744902)

Abstract

To meet the safety requirements of the integrated avionics system in the domain of full-daplex switched Ethernet (AFDX), a Risk Balance based Path Planning (RBPP) algorithm for full-daplex switched Ethernet (AFDX) virtual link is proposed, which can meet the requirements for independence of avionics functions, and avoid dispersing risks at the same time. Based on the failure conditions of civil aircraft, the risk models for hosted functions, partitions, end systems and the VL are established, and two different risk modeling strategies are given. RBPP is aimed to balance physical link risks, taking into account real time, network load and other factors. The particle swarm algorithm is introduced to solve the problem. The RBPP algorithm is realized using the simulation optimization method, and simulation analysis is carried out in the typical industrial Avionics Full Duplex switched Ethernet (AFDX) network and A380 AFDX network architecture. The results show that simplification of the VL multicast will increase the network risk. The RBPP algorithm is compared with the Shortest Path (SP) Algorithm and Load Balancing (LB) algorithm under a configuration of 1000 VLs, and the comparison results show that the RBPP algorithm can meet the needs for isolation between all avionics functions. The risk balance in two network topologies that applies RBPP algorithm improves 10.7% and 23.4% than that of the LB, and improved 35.4% and 47.9% than that of the SP.

Cite this article

ZHAO Changxiao , HE Feng , YAN Fang , WANG Peng , XIONG Huagang . Path optimization algorithm for AFDX virtual link to balance the network risk[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(1) : 321435 -321435 . DOI: 10.7527/S1000-6893.2017.321435

References

[1] 熊华钢, 王中华. 先进航空电子综合技术[M]. 北京:国防工业出版社, 2009:10-12. XIONG H G, WANG Z H. Advanced integrated avionics technology[M]. Beijing:National Defence Industry Press, 2009:10-12(in Chinese).[2] SUCCA M, BOSCOLO I, DROCCO A, et al. IXV avionics architecture:Design, qualification and mission results[J]. Acta Astronautica, 2016, 124:67-78.[3] 王国庆, 谷青范, 王淼, 等. 新一代综合化航空电子系统构架技术研究[J]. 航空学报, 2014, 35(6):1473-1486 WANG G Q, GU Q F, WANG M, et al. Research on the architecture technology for new generation integrated avionics system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1473-1486(in Chinese).[4] CHA Y J, LIM J H, LEE S Y, et al. New feasible grouping algorithms for virtual link in AFDX networks[C]//International Conference on Informatics, Electronics and Vision, 2015:1-4.[5] BAKER K. Filling the FAA guidance and policy gap for systems integration and safety assurance[C]//IEEE Digital Avionics Systems Conference.Piscataway,NJ:IEEE Press, 2011:1B4-1-1B4-4.[6] SPITZER C R. The avionics handbook[M]. Boca Raton, FL:CRC Press, 2001:155-158.[7] BAUER H, SCHARBARG J L, FRABOUL C. Improving the worst-case delay analysis of an AFDX network using an optimized trajectory approach[J]. IEEE Transactions on Industrial Informatics, 2010, 6(4):521-533.[8] 赵露茜, 李峭, 林晚晴, 等. 基于随机网络演算的TTE网络时延分析[J]. 航空学报, 2016, 37(6):1953-1961. ZHAO L X, LI Q, LIN W Q, et al. Stochastic network calculus for analysis of latency on TTEthernet network[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1953-1961(in Chinese).[9] 代真, 何锋, 张宇静, 等. AFDX虚拟链路路径实时寻优算法[J]. 航空学报, 2015, 36(6):1924-1932. DAI Z, HE F, ZHANG Y J, et al. Real-time path optimization algorithm of AFDX virtual link[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1924-1932(in Chinese).[10] FRANCES F, FRABOUL C, GRIEU J. Using network calculus to optimize the AFDX network[J]. IEEE Transactions on Medical Imaging, 2006, 25(10):1319-1328.[11] 刘成, 李航, 何锋, 等. 基于轨迹方法的AFDX网络路由配置算法[J]. 北京航空航天大学学报, 2012, 38(12):1587-1590, 1595. LIU C, LI H, HE F, et al. Routing algorithm of AFDX network based on trajectory approach[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(12):1587-1590, 1595(in Chinese).[12] WU Z, HUNG N, LI R, et al. A delay reliability estimation method for avionics full duplex switched Ethernet based on stochastic network calculus[J]. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 2015, 17(2):288-296.[13] ZHANG Y T, HUANG Z, XIONG H G. Study on network reliability in avionics based on performance degradation constraints[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8):1461-1468.[14] Federal Aviation Administration. Advisory Circulars:AC 20-156 aviation databus assurance[S]. Washington, D.C.:Federal Aviation Administration, 2006.[15] AN D, KIM K H, KIM K I. Optimal configuration of virtual links for avionics network systems[J]. International Journal of Aerospace Engineering, 2015, 11(8):1-9.[16] 冯晓林, 戴卫兵, 彭国金. C919飞机航空总线采集和实时分析技术[J]. 飞行力学, 2016, 34(5):73-76. FENG X L, DAI W B, PENG G J, Avionic bus collection and real-time analysis techniques of C919[J]. Flight Dynamics, 2016, 34(5):73-76(in Chinese).[17] Society of Automotive Engineers. Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment:ARP4761[S]. Troy Michigan:Society of Automotive Engineers,1996.[18] Aeronautical Radio Inc.. Aircraft data network part 7 avionics full-duplex switched Ethernet network:ARINC664-P7[S]. Annapolis:Aeronautical Radio Inc., 2009.[19] LIU C, WANG T, ZHAO C X, et al. Worst-case flow model of VL for worst-case delay analysis of AFDX[J]. Electronics Letters, 2012, 48(6):327-328.[20] EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of The Sixth International Symposium on Micro Machine and Human Science. Piscataway, NJ:IEEE Press, 2002:39-43.[21] XU F, CHEN H, GONG X, et al. Fast nonlinear model predictive control on FPGA using particle swarm optimization[J]. IEEE Transactions on Industrial Electronics, 2016, 63(1):310-321.[22] LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3):281-295.[23] CRAUSER A, MEHLHORN K, MEYER U, et al. A parallelization of Dijkstra's shortest path algorithm[M]. Berlin:Springer, 1998:722-731.[24] FURER M, RAGHAVACHARI B. Approximating the minimum-degree steiner tree to within one of optimal[J]. Journal of Algorithms, 1994, 17(3):409-423.[25] SHI Y, EBERHART R C. Parameter selection in particle swarm optimization[C]//Proceedings of the 7th International Conference on Evolutionary Programming Ⅶ, 1998:591-600.[26] 黄臻, 张勇涛, 熊华钢. 基于离散事件方法的AFDX建模与仿真[J]. 北京航空航天大学学报, 2011, 37(10):1326-1332. HUNG Z, ZHANG Y T, XIONG H G.AFDX modeling and simulation based on discrete event method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(10):1326-1332(in Chinese).[27] CHARARA H, SCHARBARG J L, ERMONT J, et al. Methods for bounding end-to-end delays on an AFDX network[C]//2006 Euromicro Conference on Real-Time Systems. Piscataway, NJ:IEEE Press, 2006.[28] ITIER J B. A380 integrated modular avionics[C]//Proceedings of the ARTIST2 Meeting on Integrated Modular avionics, 2007.
Outlines

/