Material Engineering and Mechanical Manufacturing

Cohesive zone model for prepreg tack based on probe test

  • SHU Zhan ,
  • PENG Xiao ,
  • LI Fafei ,
  • XU Qiang
Expand
  • The State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China

Received date: 2017-05-15

  Revised date: 2017-08-07

  Online published: 2017-08-07

Supported by

National Natural Science Foundation of China Youth Fund (11402228); the Fundamental Research Funds for the Central Universities (2016FZA8002)

Abstract

The tack behavior between prepreg and the mould during the laying process and its variation with process parameters are studied by the probe test. It is found that the laying rate, pressure and temperature have a significant effect on the tack behavior of the prepreg in the experiment, and there exist two failure modes:the interfacial failure mode (low temperature) and cohesive failure mode (high temperature). The tack behavior of prepreg is then characterized by the exponential Cohesive Zone Model (CZM), which is used to describe the debonding process of prepreg including rapid increase of stress, damage propagation and ultimate failure of bond layer at different temperatures. The quantitative relationship between the CZM parameters of prepreg tack and the laying process parameters. The results show that the bond strength and the characteristic displacement of prepreg decline nearly linearly with the growth of the laying rate, and go up nearly linearly with the rise of the laying pressure. With the growth of the laying temperature, the CZM parameters of prepreg tack increase at first and then decrease, showing approximately quadratic relationship. The result can provide some reference for laying process planning under specific laying conditions.

Cite this article

SHU Zhan , PENG Xiao , LI Fafei , XU Qiang . Cohesive zone model for prepreg tack based on probe test[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(2) : 421416 -421416 . DOI: 10.7527/S1000-6893.2017.421416

References

[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite material and aerospace[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese).[2] 陈绍杰. 复合材料技术与大型飞机[J]. 航空学报, 2008, 29(3):605-610. CHEN S J. Composite technology and large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):605-610(in Chinese).[3] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797. GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2773-2797(in Chinese).[4] LUKASZEWICZ D H, WARD C, POTTER K. The engineering aspects of automated prepreg layup:History, present and future[J]. Composites Part B:Engineering, 2012, 43(3):997-1009.[5] 文立伟, 肖军, 王显峰, 等. 中国复合材料自动铺放技术研究进展[J]. 南京航空航天大学学报, 2015, 47(5):637-649. WEN L W, XIAO J, WANG X F, et al. Progress of automated placement technology for composites in china[J]. Journal of Nanjing University of Aeronautics Astronautics, 2015, 47(5):637-649(in Chinese).[6] GUTOWSKI T G, BONHOMME L. The mechanics of prepreg conformance[J]. Journal of Composite Materials, 1988, 22(3):204-223.[7] 张鹏, 孙容磊, 连海涛, 等. 自动铺带铺层贴合形成机制[J]. 复合材料学报, 2014, 31(1):40-48. ZHANG P, SUN R L, LIAN H T, et al. Bonding mechanism of ply during automated tape laying process[J].Acta Materiae Compositae Sinica, 2014, 31(1):40-48(in Chinese).[8] 文琼华, 王显峰, 何思敏, 等. 温度对预浸料铺放效果的影响[J]. 航空学报, 2011, 32(9):1740-1745. WEN Q H, WANG X F, HE S M, et al. Influence of temperature on placement effect of prepreg[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1740-1745(in Chinese).[9] 黄志军, 王显峰, 戴振东, 等. 自动铺放过程双马树脂预浸料温度与黏度[J]. 复合材料学报, 2012, 29(3):49-53. HUANG Z J, WANG X F, DAI Z D, et al. Temperature and viscosity of bismaleimide resin prepregs in automated tape laying process[J]. Acta Materiae Compositae Sinica, 2012, 29(3):49-53(in Chinese).[10] BENEDEK I, FELDSTEIN M M. Fundamentals of pressure sensitivity[M]. London:CRC Press, 2009.[11] BANKS R, MOURITZ A P, JOHN S, et al. Development of a new structural prepreg:Characterisation of handling, drape and tack properties[J]. Composite Structures, 2004, 66(1):169-174.[12] BROOKS J R, PLATT P R. Method and apparatus to determine composite prepreg:USA, 5513537[P]. 1996-05-07.[13] 黄文宗, 孙容磊, 连海涛, 等. 预浸料的铺放适宜性评价(一)——粘性篇[J]. 玻璃钢/复合材料, 2013(6):3-11. HUANG W Z, SUN R L, LIAN H T, et al. Assessment for placement suitability of prepreg-part of tack[J]. Fiber Reinforced Plastic/Composites, 2013(6):3-11(in Chinese).[14] CROSSLEY R J, SCHUBEL P J, WARRIOR N A. The experimental determination of prepreg tack and dynamic stiffness[J]. Composites Part A:Applied Science and Manufacturing, 2011, 43(3):423-434.[15] CROSSLEY R J, SCHUBEL P J, WARRIOR N A. Experimental determination and control of prepreg tack for automated manufacture[J]. Plastics Rubber and Composites, 2011, 40(6/7):363-368.[16] CROSSLEY R J, SCHUBEL P J, FOCATⅡS D S A. Time-temperature equivalence in the tack and dynamic stiffness of polymer prepreg and its application to automated composites manufacturing[J]. Composites Part A:Applied Science and Manufacturing, 2013, 52(5):126-133.[17] 陆楠楠, 肖军, 齐俊伟, 等. 面向自动铺放预浸料动态黏性实验研究[J]. 航空学报, 2014, 35(1):279-286. LU N N, XIAO J, QI J W, et al. Experimental research on prepreg dynamic tack based on automated placement process[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):279-286(in Chinese).[18] 王敏, 李勇, 肖军, 等. NY9200GA树脂体系预浸料自动铺放粘结性工艺研究[J]. 南京航空航天大学学报, 2015, 47(4):471-478. WANG M, LI Y, XIAO J, et al. Research on the prepreg tack of NY9200GA resin series for automated placement process[J]. Journal of Nanjing University of Aeronautics Astronautics, 2015, 47(4):471-478(in Chinese).[19] AHN K J, SEFERIS J C, PELTON T, et al. Analysis and characterization of prepreg tack[J]. Polymer Composites, 1992, 13(3):197-206.[20] DUBOIS O, CAM J B, BEAKOU A. Experimental analysis of prepreg tack[J]. Experimental Mechanics, 2010, 50(5):599-606.[21] MOHAMMED I K, CHARALAMBIDES M N, KINLOCH A J. Modelling the interfacial peeling of pressure sensitive adhesives[J]. Journal of Non-Newtonian Fluid Mechanics, 2015, 222(8):141-150.[22] MOHAMMED I K, CHARALAMBIDES M N, KINLOCH A J. Modeling the effect of rate and geometry on peeling and tack of pressure-sensitive adhesives[J]. Journal of Non-Newtonian Fluid Mechanics, 2016, 233(7):85-94.[23] YOSHINOBU N, KEIGO I, KEIKO I, et al. Contact time and temperature dependencies of tack in polyacrylic block copolymer pressure-sensitive adhesives measured by the probe tack test[J]. Journal of Adhesion Science and Technology, 2012, 26(1-3):231-249.[24] LUKASZEWICZ D H, POTTER K. Through-thickness compression response of uncured prepreg during manufacture by automated layup[J]. Composites Part B:Engineering, 2011, 226(2):193-202.[25] 段玉岗, 刘芬芬, 陈耀, 等. 纤维铺放压紧力及预浸带加热温度对复合材料力学性能的影响[J]. 复合材料学报, 2012, 29(4):148-156. DUAN Y G, LIU F F, CHEN Y, et al. Effects of compaction force and heating temperature of prepreg on composite mechanical properties during fiber placement process[J]. Acta Materiae Compositae Sinica, 2012, 29(4):148-156(in Chinese).[26] 段玉岗, 闫晓丰, 李超, 等. 压辊材料及形状对纤维铺放压紧效果的影响[J]. 航空学报, 2014, 35(4):1173-1180. DUAN Y G, YAN X F, LI C, et al. Effect of material and shape of compaction roller on the voids and compaction uniformity in fiber placement process[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4):1173-1180(in Chinese).[27] 张洋, 钟翔屿, 包建文. 先进树脂基复合材料自动丝束铺放技术研究现状及发展方向[J]. 航空制造技术, 2013, 443(23/24):131-140. ZHANG Y, ZHONG X Y, BAO J W. Research status and future trend of automated fiber placement technology for advanced polymer matrix composites[J]. Aeronautical Manufacturing Technology, 2013, 443(23/24):131-140(in Chinese).[28] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2):100-104.[29] NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54(3):525-531.[30] 卢子兴. 复合材料界面的内聚力模型及其应用[J]. 固体力学学报, 2015, 10(1):85-94. LU Z X. A simple review for cohesive zone models of composite interface and their applications[J]. Chinese Journal of Solid Mechanics, 2015, 10(1):85-94(in Chinese).[31] 于飞, 陈向明, 张阿盈, 等. 一种改进的内聚力损伤模型在复合材料层合板低速冲击损伤模拟中的应用[J]. 复合材料学报, 2015, 32(6):1745-1753. YU F, CHEN X M, ZHANG A Y, et al. Application of modified cohesive zone damage model in damage simulation of composite laminates subject to low-velocity impact[J]. Acta Materiae Compositae Sinica, 2015, 32(6):1745-1753(in Chinese).[32] PANETTIERI E, FANTERIA D, DANZI D. A sensitivity study on cohesive elements parameters:Towards their effective use to predict delaminations in low-velocity impacts on composites[J]. Composite Structures, 2016, 137(3):130-139.[33] XU Q, LU Z X. An elastic-plastic cohesive zone model for metal-ceramic interfaces at finite deformations[J]. International Journal of Plasticity, 2013, 41(2):147-164.[34] LU Z X, XU Q. Cohesive zone modeling for viscoplastic behavior at finite deformations[J]. Composites Science and Technology, 2013, 74(4):173-178.[35] 林国伟, 陈普会. 胶接修补复合材料层合板失效分析的PDA-CZM方法[J]. 航空学报, 2009, 30(10):1877-1882. LIN G W, CHEN P H. PDA-CZM method for failure analysis of bonded repair of composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1877-1882(in Chinese).[36] RIBEIRO F M F, CAMPILHO R D, CARBAS R J, et al. Strength and damage growth in composite bonded joints with defects[J]. Composites Part B:Engineering, 2016, 100(1):91-100.[37] NEEDLEMAN A. An analysis of tensile decohesion along an interface[J]. Journal of the Mechanics and Physics of Solids, 1990, 38(3):289-324.
Outlines

/