Reliable brazing of Ti60 alloy and ZrO2 ceramic was successfully achieved using AgCu filler metal. The interfacial microstructure and reaction products of Ti60/AgCu/ZrO2 joints brazed at different temperatures were investigated by the Scanning Electron Microscope (SEM), Energy Dispersive Spectrometer (EDS) and X-Ray Diffractometer (XRD). Results show that the typical interfacial microstructure of the Ti60/AgCu/ZrO2 joint was Ti60 alloy/α-Ti+Ti2Cu diffusion layer/TiCu+TiCu2/Ag(s,s)+Cu(s,s)/Ti3Cu3O layer/TiO layer/ZrO2 ceramic. With the increase of the brazing temperature, the thickness of the diffusion layer of α-Ti+Ti2Cu, TiCu+TiCu2 layers, Ti3Cu3O layer and TiO layer adjacent to the ZrO2 ceramic increased gradually, and the granular Ti-Cu IMCs grew gradually, meanwhile the content of the Ag-based solid solution and Cu-based solid solution decreased. The shear test indicates that the joint brazed at 900℃ for 10 min exhibited the highest shear strength of 124.9 MPa tested at room temprature, and the joint tested at 500℃ and 600℃ exhibited the shear strength of 83.0 MPa and 30.2 MPa, respectively. Typical fracture analysis displays that the brazed joint tended to fracture at the interface between the ZrO2 ceramic and the brazing seam, and in the brazing seam adjacent to the interface.
BIAN Hong
,
HU Shengpeng
,
SONG Xiaoguo
,
ZHOU Zhiqiang
,
FENG Jicai
. Effect of brazing temperature on interfacial microstructure and mechanical property of Ti60/AgCu/ZrO2 joint[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017
, 38(12)
: 421402
-421402
.
DOI: 10.7527/S1000-6893.2017.421402
[1] 陶春虎, 刘庆瑔, 曹春晓, 等. 航空用钛合金的失效及其预防[M]. 北京:国防工业出版社, 2002. TAO C H, LIU Q Q, CAO C X, et al. Failure and prevention of aeronautical titanium alloy[M]. Beijing:National Defence Industry Press, 2002(in Chinese).[2] 郭萍, 洪权, 曾立英, 等. 固溶处理对Ti-600高温钛合金蠕变性能的影响[J]. 热加工工艺, 2006, 35(14):50-52. GUO P, HONG Q, ZENG L Y, et al. Effect of solution heat treatment on creep property of Ti-600 high temper-ature titanium alloy[J]. Hot Working Technology, 2006, 35(14):50-52(in Chinese).[3] 蔡建明, 李臻熙, 马济民, 等. 航空发动机用600℃高温钛合金的研究与发展[J]. 材料导报, 2005, 19(1):50-53. CAI J M, LI Z X, MA J M, et al. Research and development of 600℃ high temperature titanium alloys for aeroengine[J]. Materials Review, 2005, 19(1):50-53(in Chinese).[4] 王清江, 刘建荣, 杨锐, 等. 一种高热强性、高热稳定性的高温钛合金:ZL200710011771.0[P]. 2008-01-16. WANG Q J, LIU J R, YANG R, et al. A high temperature strength and high heat stability:ZL200710011771.0[P]. 2008-01-16(in Chinese).[5] SMORYGO O, KIM J S, KIM M D, et al. Evolution of the interlayer microstructure and the fracture modes of the zirconia/Cu-Ag-Ti filler/Ti active brazing joints[J]. Materials Letters, 2007, 61:613-616.[6] CHUANG T H, YEH M S, CHAI Y H. Brazing of zirconia with AgCuTi and SnAgTi active filler metals[J]. Metallurgical and Materials Transactions A, 2000, 31(6):1591-1597.[7] FENG J C, DAI X Y, WANG D, et al. Microstructure evolution and mechanical properties of ZrO2/TiAl joints vacuum brazed by Ag-Cu filler metal[J]. Materials Science and Engineering:A, 2015, 639:739-746.[8] TEKELI S. The solid solubility limit of Al2O3 and its effect on densification and microstructural evolution in cubic-zirconia used as an electrolyte for solid oxide fuel cell[J]. Materials and Design, 2007, 28(2):713-716.[9] SINGH M, SHPARGEL T P, ASTHANA R. Braze oxidation behavior and joint microstructure in YSZ/steel joints made using palladium brazes for SOFC applications[J]. Materials Science and Engineering:A, 2008, 485(1):695-702.[10] HAO H Q, WANG Y L, JIN Z H, et al. Joining of zirconia to zirconia using AgCuTi filler metal[J]. Journal of Materials Processing Technology, 1995, 52(2):238-247.[11] TIAN X Y, FENG J C, SHI J M, et al. Brazing of ZrB2-SiC-C ceramic and GH99 superalloy to form reticular seam with low residual stress[J]. Ceramics International, 2015, 41(1):145-153.[12] LIU J K, CAO J, SONG X G, et al. Evaluation on diffusion bonded joints of TiAl alloy to Ti3SiC2 ceramic with and without Ni interlayer:Interfacial microstructure and mechanical properties[J]. Materials and Design, 2014, 57(5):592-597.[13] LAN L, REN Z M, YU J B, et al. Microstructure and mechanical properties of partial transient liquid phase bonded Si3N4-DZ483 superalloy joints[J]. Materials Letters, 2014, 121:223-236.[14] LIU Y H, HU J D, SHEN P, et al. Microstructural and mechanical properties of jointed ZrO2/Ti-6Al-4V alloy using Ti33Zr17Cu50 amorphous brazing filler[J]. Materials and Design, 2013, 47(9):281-286.[15] LIU Y H, HU J D, ZHANG Y P, et al. Joining of zirconia and Ti-6Al-4V using a Ti-based amorphous filler[J]. Journal of Materials Science and Technology, 2011, 27(7):653-658.[16] LIU Y H, HU J D, SHEN P, et al. Effects of fabrication parameters on interface of zirconia and Ti-6Al-4V joints using Zr55Cu30Al10Ni5 amorphous filler[J]. Journal of Materials Engineering and Performance, 2013,22(9):2602-2609.[17] CAO J, SONG X G, LI C, et al. Brazing ZrO2 ceramic to Ti-6Al-4V alloy using NiCrSiB amorphous filler foil:Interfacial microstructure and joint properties[J]. Materials Characterization, 2013, 81:85-91.[18] DAI X Y, CAO J, LIU J Q, et al. Interfacial reaction behavior and mechanical characterization of ZrO2/TC4 joint brazed by Ag-Cu filler metal[J]. Materials Science and Engineering:A, 2015, 646:182-189.[19] BAKER H. ASM handbook:Alloy phase diagrams[M].10th ed. Cleveland, OH:ASM International, 1992:2-181.[20] SANTELLA M L, PAK J J. Brazing titanium-vapor-coated zirconia[J]. Welding Journal-Welding Research Supplement, 1993, 72(4):165-172.[21] 黄小丽, 林实, 肖纪美. 金属-陶瓷钎焊后ZrO2变色现象的研究[J]. 兵器材料科学与工程, 1999, 22(6):40-43. HUANG X L, LIN S, XIAO J M. Investigation on discoloration of ZrO2 after being brazed with metals[J]. Ordnance Material Science and Engineering, 1999, 22(6):40-43(in Chinese).[22] LIU G W, LI W, QIAO G J, et al. Microstructures and interfacial behavior of zirconia/stainless steel joint prepared by pressureless active brazing[J]. Journal of Alloys and Compounds, 2009, 470(1-2):163-167.[23] KELKAR G P, SPEAR K E, CARIM A H. Thermodynamic evaluation of reaction products and layering in brazed alumina joints[J]. Journal of Materials Research, 1994, 9(9):2244-2250.