Fluid Mechanics and Flight Mechanics

Problems in optimization design of HLFC sweep wing

  • YANG Yixiong ,
  • YANG Tihao ,
  • BAI Junqiang ,
  • SHI Yayun ,
  • LU Lei
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2017-05-25

  Revised date: 2017-07-23

  Online published: 2017-07-21

Supported by

National Basic Research Program of China (2014CB744804)

Abstract

An optimization platform is built for the Hybrid Laminar Flow Control (HLFC) sweep wing, based on the extended free-form deformation technique, radial basis function interpolation based mesh deformation, improved particle swarm optimization algorithm, and Reynolds-averaged Navier-Stokes solver coupled with the eN method. Factors about the HLFC wing are researched including airfoil geometry, Reynolds number and suction distribution. The HLFC wing design methodology is discussed by comparing and analyzing how those factors affect the drag coefficient and length of the laminar area. The desired pressure characteristics for the HLFC wing with long laminar area and low drag coefficient are summarized. Results show that the pressure peak at the leading edge is relatively low and followed by a slight adverse pressure gradient, and then a long stable favorable pressure gradient is maintained until a shock wave. After the HLFC technology is applied, a sizable laminar area is obtained, and the friction drag and pressure drag are decreased obviously. Reduction of drag is far greater than the design result without the laminar control. The HLFC design should be based on comprehensive consideration of friction drag, pressure drag, strength of shock and trim drag (nose-down pitching moment). The case with the larger laminar area may not be equivalent to the case with the lowest drag. In general, the higher Reynolds number is, the harder laminar flow is to be maintained. Even though the Reynolds number is too high to maintain the natural laminar flow, the length of the laminar flow is still large if the HLFC technology is applied. Research on suction distribution illustrates that the suction system with variable suction distribution is more efficient for saving suction power compared with the suction system with constant suction distribution.

Cite this article

YANG Yixiong , YANG Tihao , BAI Junqiang , SHI Yayun , LU Lei . Problems in optimization design of HLFC sweep wing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(1) : 121448 -121448 . DOI: 10.7527/S1000-6893.2017.121448

References

[1] RENEAUX J. Overview on drag reduction technologies for civil transport aircraft[C]//European Congress on Computational Methods in Applied Science and Engineering, 2004.[2] SCHRAUF G. Status and perspectives of laminar flow[J]. The Aeronautical Journal, 2005, 109(1102):639-644.[3] GREEN J E. Laminar flow control-Back to the future?:AIAA-2008-3738[R]. Reston, VA:AIAA, 2008.[4] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3):783-795.[5] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese).[6] WAGNER R D, MADDALON D V, FISHER D F. Laminar flow control leading-edge systems in simulated airline service[J]. Journal of Aircraft, 1990, 27(3):239-244.[7] COLLIER F S. An overview of recent subsonic laminar flow control flight experiments:AIAA-1993-2987[R]. Reston, VA:AIAA, 1993.[8] RISSE K, SCHUELTKE F, STUMPF E, et al. Conceptual wing design methodology for aircraft with hybrid laminar flow control[C]//AIAA 52nd Aerospace Sciences Meeting. Reston, VA:AIAA, 2014.[9] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese).[10] 耿子海, 刘双科, 王勋年, 等. 二维翼型混合层流控制减阻技术试验研究[J]. 实验流体力学, 2010, 24(1):46-50. GENG Z H, LIU S K, WANG X N, et al. Test study of drag reduction technique by hybrid laminar flow control with two-dimension airfoil[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):46-50(in Chinese).[11] 王菲, 额日其太, 王强, 等. 后掠翼混合层流控制机制的实验[J]. 航空动力学报, 2010,25(4):918-924. WANG F, ERIQITAI, WANG Q, et al. Experimental investigation of HLFC mechanism on swept wing[J]. Journal of Aerospace Power, 2010,25(4):918-924(in Chinese).[12] 王菲, 额日其太, 王强, 等. 基于升华法的后掠翼混合层流控制研究[J]. 实验流体力学, 2010,24(3):54-58. WANG F, ERIQITAI, WANG Q, et al. Investigation of HLFC on swept wing based on sublimation technique[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3):54-58(in Chinese).[13] SHI Y, BAI J, HUA J, et al. Numerical analysis and optimization of boundary layer suction on airfoils[J]. Chinese Journal of Aeronautics, 2015, 28(2):357-367.[14] MACK L M. Boundary-layer linear stability theory:AGARD Rep. 709[R]. Paris:AGARD, 1984.[15] DAGENHART J, SARIC W S. Crossflow stability and transition experiments in swept-wing flow[R]. Washington, D.C.:NASA Langley Technical Report Server, 1999.[16] LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart:Stuttgart University, 2006.[17] 何小龙, 白俊强, 夏露, 等. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报, 2014, 29(10):2311-2320. HE X L, BAI J Q, XIA L, et al. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power, 2014, 29(10):2311-2320(in Chinese).[18] COQUILLART S. Extended free-form deformation:A sculpturing tool for 3D geometric modeling[J]. Computer Graphics, 1990, 24(4):187-196.[19] BOER A D, SCHOOT V D, BIJL H. Mesh deformation based on radial basis function interpolation[J]. Computers & Structures, 2007, 85(11-14):784-795.[20] 白俊强, 刘南, 邱亚松, 等. 基于RBF动网格方法和改进粒子群优化算法的多段翼型优化[J]. 航空学报, 2013, 34(12):2701-2715. BAI J Q, LIU N, QIU Y S, et al. Optimization of multi-foil based on RBF mesh deformation method and modified particle swarm optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2710-2715(in Chinese).[21] 白俊强, 尹戈玲, 孙智伟. 基于二阶振荡及自然选择的随机权重混合粒子群算法[J]. 控制与决策, 2012(10):1459-1464. BAI J Q, YIN G L, SUN Z W. Random weighted hybrid particle swarm optimization algorithm based on second order oscillation and natural selection[J]. Control and Decision, 2012(10):1459-1464(in Chinese).
Outlines

/