ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Test of bird striking on panel and identification method for bird constitutive parameters
Received date: 2017-05-05
Revised date: 2017-07-18
Online published: 2017-07-18
Supported by
Aeronautical Science Foundation of China (2016ZA23005)
Accurate and reliable constitutive and dynamic parameters are the foundation of the structural anti-bird impact design and analysis. To obtain bird constitutive parameters, tests of bird striking on the thin aluminum alloy panel at the velocity of 139 m/s are carried out to measure the impact load, panel displacement and strain. An optimization method for identifying bird constitutive parameters using ISIGHT and PAM-CRASH is proposed, and displacement on the panel center is treated as the optimization objective. A numerical simulation is conducted with the optimized parameters being substituted into the numerical model. Comparison of the test and numerical analysis results shows that the displacement acquired by two different ways presents good consistency, and the impact load acquired by two different ways agrees largely with each other. The identification method for bird constitutive parameters proposed in this paper is proved to be effective and reasonable.
WANG Jizhen , LIU Xiaochuan . Test of bird striking on panel and identification method for bird constitutive parameters[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(S1) : 721550 -721550 . DOI: 10.7527/S1000-6893.2017.721550
[1] MCCARTHY M A, XIAO J R, PETRINIC N, et al. Modeling of birdstrike on an aircraft wingleading edge made from fiber metal laminates—Part 1: Metalial modelling[J]. Applied Composite Materials, 2004, 11(5): 295-315.
[2] WEST B S. Design and testing of F-111 bird resistant windshield/support structured: AFFDLTR-76101[R]. Ohio: Wright-Patterson Air Force Base,1976.
[3] 王富生.鸟体材料参数的一种反演方法[J]. 航空学报, 2007, 28(2): 344-347. WANG F S. An inversion method for material parameters of birds[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 344-347 (in Chinese).
[4] 刘军, 李玉龙, 石宵鹏, 等. 鸟体本构模型参数反Ⅱ: 模型参数反演研究[J]. 航空学报, 2011, 32(5): 812-821. LIU J, LI Y L, SHI X P, et al. Parameters inversion on bird constitutive model Part Ⅱ: Study on model parameters inversion[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 812-821 (in Chinese).
[5] LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Bird's substitute tests results and evaluation of available numerical methods[J]. International Journal of Impact Engineering, 2009, 36(10): 1276-1287.
[6] 刘军, 李玉龙, 刘元镛. PAM-CRASH应用基础[M]. 西安: 西北工业大学出版社, 2008: 10-35. LIU J, LI Y L, LIU Y Y. PAM-CRASH application basis[M]. Xi'an: Northwestern Polytechnical University Press, 2008: 10-35 (in Chinese).
/
〈 | 〉 |