Fluid Mechanics and Flight Mechanics

Asymmetrical thrust fully automatic compensation technology

  • ZHAO Hai ,
  • JI Yun ,
  • LI Honggang
Expand
  • Flight Control System Design Institute, AVIC The First Aircraft Institute, Xi'an 710089, China

Received date: 2017-05-25

  Revised date: 2017-07-12

  Online published: 2017-07-12

Abstract

A strategy for fully automatic asymmetrical thrust compensation for multi-engine aircraft is researched. The lateral-directional balanced conditions for the asymmetrical thrust flight are derived. An automatic compensation control method is proposed based on speed signals of the engine rotor. The method proposed not only ensures good compensation purpose, but also obviously increases reliability of the automatic compensation system. Logic operation of high pressure and low pressure rotor speed signals are conducted, and the differential high pressure rotor speed between symmetrical engines is used to modify the aileron and rudder response commands. The asymmetrical thrust flight is then compensated with the method proposed together with the primary flight control system. The automatic compensation control system is optimized based on the characteristic that lateral-directional primary flight control possesses roll angle hold function. A linear mathematical model for aircraft balanced conditions are developed for full envelop. Control law for fully automatic compensation of the asymmetrical thrust flight is obtained. Six degree of freedom aircraft nonlinear equations are modeled and simulated by MATLAB/Simulink. The simulation result shows that the method proposed can be used to achieve excellent compensation of asymmetrical thrust flight.

Cite this article

ZHAO Hai , JI Yun , LI Honggang . Asymmetrical thrust fully automatic compensation technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(S1) : 721526 -721526 . DOI: 10.7527/S1000-6893.2017.721526

References

[1] 孟祥光, 王立新, 刘海良. 民机起飞爬升梯度适航符合性数学仿真评估[J]. 北京航空航天大学学报, 2016, 42(10): 2222-2230. MENG X G, WANG L X, LIU H L. Mathematical simulation and assessment of airworthiness compliance of climb gradient during takeoff of civil aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2222-2230(in Chinese).
[2] 傅跃声, 杨叙林. H5飞机单发上升性能分析[J]. 飞行力学, 1995,13(1): 84-90. FU Y S, YANG X L. The analysis of climbing behavior with single engine for H5 aircraft[J]. Flight Dynamics, 1995, 13(1): 84-90 (in Chinese).
[3] 张立彬, 李宗娟, 曹东坡. 不对称推力飞行的最小操纵速度分析[J].飞行力学, 2000, 18(1): 61-64. ZHANG L B, LI Z J, CAO D P. Research into minimum control speed at the non-symmetric thrust flight[J]. Flight Dynamics, 2000, 18(1): 61-64 (in Chinese).
[4] 杨斐. 西门诺尔PA-44飞机单发飞行特点及处置方法[J]. 中国民航飞行学院学报, 2002, 13(2): 2-3. YANG F. Ximennuoer PA-44 aircraft special and handing method of single engine flight[J]. Journal of China Civil Aviation Flying College, 2002, 13(2): 2-3 (in Chinese).
[5] SMAILI M H, MULDER J A. Flight data reconstruction and simulation of the 1992 Amsterdam Bijlmermeer airplane accident: AIAA-2000-4586[R].Reston, VA: AIAA, 2000.
[6] 杨翠霞, 程伟豪, 张培田, 等. 民机地面最小操纵速度试飞技术研究[J]. 飞行力学, 2007, 25(3): 75-78. YANG C X, CHENG W H, ZHANG P T, et al. Flight test technology research on ground minimum control speed of civil airplanes[J]. Flight Dynamics, 2007, 25(3): 75-78 (in Chinese).
[7] 韩丰波, 于新江, 樊丹.某大型运输机不对称推力飞行初探[J].飞行力学, 1997,15(3): 80-83. HAN F B, YU X J, FAN D. Discussion on non-symmetric thrust flight for a certain type of the large transporter[J]. Flight Dynamics, 1997, 15(3): 80-83 (in Chinese).
[8] 贾重任, 黄成涛,王立新. 空中最小操纵速度的人机闭环数学仿真计算[J]. 北京航空航天大学学报, 2013, 39(5): 580-584. JIA C R, HUANG C T, WANG L X. Mathematical simulation method to calculate air minimum control speed[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 580-584(in Chinese).
[9] OSTROM G B. Propulsion aspects of the thrust asymmetry compensation system (TAC) on the Boeing 777 airplane: 1998-GT-457[R].New York: ASME, 1998.
[10] 郭金花, 安刚, 赵海. 单发失效推力不对称自动补偿控制律研究[C]//2010中国制导、导航与控制学术会议论文集. 北京: 科学出版社, 2010: 492-494. GUO J H, AN G, ZHAO H. Control law design for atuo compensation of thrust asymmetry after one engine failure[C]//2010 Chinese Guidance, Navigation and Control Conference. Beijing: Science Press, 2010: 492-494(in Chinese).
[11] 姬猛. 推力不对称时民机飞行控制律重构技术研究[D].南京: 南京航空航天大学, 2011. JI M. Research on control law reconfiguration for civil aircraft with asymmetric thrust [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese).
[12] 方振平, 陈万春, 张曙光.航空飞行器飞行动力学[M].北京: 北京航空航天大学出版社, 2005: 270-274. FANG Z P, CHEN W C, ZHANG S G. Aeronautical aircraft flight dynamic[M]. Beijing: Beihang University Press, 2005: 270-274(in Chinese).
[13] 吴文海, 张双中亚, 王启, 等. 单发停车下滑着舰飞行动力学仿真分析[J]. 飞行力学, 2014,32(6): 489-493. WU W H, ZHANG S Z Y, WANG Q, et al. Simulation and analysis of one engine out glide carrier landing flight dynamics[J]. Flight Dynamics, 2014, 32(6): 489-493(in Chinese).
[14] 王峥华, 李超. 多发飞机着陆进场最小操纵速度人机闭环仿真[J]. 飞行力学, 2015,33(1): 78-82. WANG Z H, LI C. Aircraft-pilot closed loop simulation of the minimum control speed during landing approach for multi-engine airplane[J]. Flight Dynamics, 2015, 33(1):78-82(in Chinese).
[15] 匡江红, 王秉良, 吕鸿雁.飞机飞行力学[M]. 北京: 清华大学出版社, 2012: 175-178. KUANG J H, WANG B L, LYU H Y. Aircraft flight dynamic[M]. Beijing: Tsinghua University Press, 2012:175-178(in Chinese).
[16] 孟宪珍.着陆进场时的最小可操纵速度[J].飞行力学, 1996, 14(3): 72-73. MENG X Z. The minimum controlling speed during approaching and landing[J]. Flight Dynamics, 1996, 14(3): 72-73(in Chinese).
[17] 刘瑜, 王海维,柳勇. 最小操纵速度飞行试验技术研究[J]. 科学技术与工程, 2012,12(3): 607-610. LIU Y, WANG H W, LIU Y. Flight test technology research on minimum control speed[J]. Science Technology and Engineering, 2012, 12(3):607-610(in Chinese).
[18] 欧阳一方, 李佳. 民用飞机非对称动力时的飞行品质研究[J].民用飞机设计与研究, 2012(4): 23-27. OUYANG Y F, LI J. Handling qualities analysis with asymmetry thrust of civil aircraft[J]. Civil Aircraft Design and Research, 2012(4): 23-27(in Chinese).
[19] 程伟豪, 张海妮. 同时受方向舵和脚蹬力限制的空中最小操纵速度理论研究[J].科学技术与工程, 2014, 14(35): 292-295. CHENG W H, ZHANG H N. Theory research of air minimum control speed limited simultaneously by rudder deflection and rudder force [J]. Science Technology and Engineering, 2014, 14(35): 292-295(in Chinese).
[20] RUDOLF B.飞行控制[M]. 金长江, 译. 北京:国防工业出版社, 1999. RUDOLF B. Flight control[M]. JIN C J, translated. Beijing: National Defense Industry Press, 1999(in Chinese).

Outlines

/