Electronics ans Communication

Control system design of dynamic test based on hydraulic drive

  • WANG Jianfeng ,
  • BU Chen ,
  • TAN Hao
Expand
  • No.4 Department of Aerodynamic Research and Test, AVIC Aerodynamics Research Institute, Harbin 150001, China

Received date: 2017-05-25

  Revised date: 2017-07-07

  Online published: 2017-07-07

Abstract

This paper introduces the design method of hardware and software for constructing the control system of wind tunnel dynamic test by applying the hydraulic drive, including the hydraulic motor, the parameter calculation and selection of the servo valve, the control system design of the hydraulic servo position, the design idea based on feedforward control and fuzzy Proportion-Integration-Differentiation (PID) control algorithm, the implementation method of simple harmonic movement. Through the analysis of the test data, this control system meet the requirements of control index for the amplitude difference less than 10% and the phase difference within 10°, under the amplitude/frequency combination of 5°/2.5 Hz or 40°/0.8 Hz, meanwhile analyzing that the main reason for the influence of motion frequency on the index is the deadband characteristic of the servo valve, and concluding the advantages and disadvantages of the dynamic test system based on hydraulic drive compared with the traditional motor drive system.

Cite this article

WANG Jianfeng , BU Chen , TAN Hao . Control system design of dynamic test based on hydraulic drive[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(S1) : 721521 -721521 . DOI: 10.7527/S1000-6893.2017.721521

References

[1] 中国航空工业空气动力研究院. 航空气动力技术[M]. 北京: 航空工业出版社, 2013: 188-196. Aerodynamic Research Institute of Aviation Industry of China. Aerodynamic technology[M]. Beijing: Aviation Industry Press, 2013: 188-196 (in Chinese).
[2] HUANG Y, POOL D M, STROOSMA O, et al. A review of control schemes for hydraulic stewart platform flight simulator motion systems: AIAA-2016-1436[R].Reston, VA: AIAA, 2016.
[3] 郁文山, 饶正周, 杜宁, 等. 2.4m风洞双自由度模型支撑机构电液伺服系统研制[J]. 液压与气动, 2012, 33(12): 50-52. YU W S, RAO Z Z, DU N, et al. Development of electro-hydraulic servo system for wind tunnel 2DOF model support mechanism[J]. Hydraulic and Pneumatic, 2012,33(12): 50-52 (in Chinese).
[4] 郭敬, 赵克定, 郭治富. 液压仿真转台的PFC-PID串级控制[J]. 航空学报, 2008, 29(5): 1395-1399. GUO J, ZHAO K D, GUO Z F. PFC-PID cascade control of hydraulic simulation turntable[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1395-1399 (in Chinese).
[5] KARAM M, ELBAYOMY, JIAO Z X, et al. PID controller optimization by GA and its performances on the electro-hydraulic servo control system[J]. Chinese Journal of Aeronautics, 2008, 21(4): 378-384.
[6] BONCHIS A, CORKE P I, RYE D C. Variable structure methods in hydraulic servo systems control[J]. Automatica, 2001, 37(4): 589-595.
[7] 周开, 李维嘉. 高速大惯性液压伺服系统高精度控制研究[J]. 计算机仿真, 2015, 32(12): 187-191. ZHOU K, LI W J. Research on high precision control of high speed large inertial hydraulic servo system[J]. Computer Simulation, 2015, 32(12): 187-191 (in Chinese).
[8] 姚建勇, 焦宗夏, 黄澄. 基于动态逆模型的电液位置伺服系统复合控制[J]. 机械工程学报, 2011, 47(10): 145-150. YAO J Y, JIAO Z X, HUANG C. Compound control of electro-hydraulic position servo system based on dynamic inverse model[J]. Journal of Mechanical Engineering, 2011, 47(10): 145-150 (in Chinese).
[9] 郝小星, 王旭平. 基于滑模自适应控制的电液位置伺服系统低速性能改善[J]. 液压与气动, 2015(1): 39-43. HAO X X, WANG X P. Improvement of low speed performance of electro-hydraulic position servo system based on sliding mode adaptive control[J]. Hydraulic and Pneumatic, 2015(1): 39-43 (in Chinese).
[10] 李建雄, 方一鸣, 石胜利. 具有输入饱和的轧机液压伺服系统鲁棒动态输出反馈控制[J]. 控制与决策, 2013, 28(2): 211-216. LI J X, FANG Y M, SHI S L. Rubust dynamic output feedback control of rolling mill hydraulic servo system with input saturation[J]. Control and Decision, 2013, 28(2): 211-216 (in Chinese).
[11] 方一鸣, 李叶红, 石胜利, 等. 液压伺服位置系统的神经网络backstepping控制[J]. 电机与控制学报, 2014, 18(6): 108-114. FANG Y M, LI Y H, SHI S L, et al. Neural network backstepping control of hydraulic servo position system[J]. Electric Machines and Control, 2014, 18(6): 108-114 (in Chinese).
[12] ZHAO J, WANG J, WANG S. Fractional order control to the electro-hydraulic system in insulator fatigue test device[J]. Mechatronics, 2013, 23(7): 828-839.
[13] WANG C, JIAO Z, WU S, et al. Nonlinear adaptive torque control of electro-hydraulic load system with external active motion disturbance[J]. Mechatronics, 2014, 24(1): 32-40.
[14] 段锁林, 郑剑锋, 王雪. 线性不确定性电液位置伺服系统的前馈补偿滑模鲁棒跟踪控制研究[J]. 液压与气动, 2015(11): 63-68. DUAN S L, ZHENG J F, WANG X. Research on sliding mode robust tracking control based on feedforward compensation for electro-hydraulic position servo system with linear uncertainty[J]. Hydraulic and Pneumatic, 2015(11): 63-68 (in Chinese).
[15] MANDAL P, SARKAR B K, SAHA R, et al. Real-time fuzzy-feedforward controller design by bacterial foraging optimization for an electrohydraulic system[J]. Engineering Applications of Artificial Intelligence, 2015, 45(C): 168-179.
[16] KARA-MOHAMED M, HEATH W P, LANZON A. Enhanced tracking for nanopositioning systems using feedforward/feedback multivariable control design[J]. IEEE Transactions on Control Systems Technology, 2015, 23(3): 1003-1013.
[17] ZHAO J, SHEN G, ZHU W, et al. Robust force control with a feed-forward inverse model controller for electro-hydraulic control loading systems of flight simulators[J]. Mechatronics, 2016, 38: 42-53.
[18] 李军伟, 赵克定, 吴盛林. 一种基于模糊补偿的自适应控制在液压转台中的应用[J]. 航空学报, 2003, 24(1): 72-74. LI J W, ZHAO K D, WU S L. Application of adaptive control based on fuzzy compensation in hydraulic turntable[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(1): 72-74 (in Chinese).
[19] 马俊功, 王世富, 王占林. 电液伺服速度系统的模糊增益调度控制[J]. 北京航空航天大学学报, 2007, 33(3): 294-297. MA J G, WANG S F, WANG Z L. Fuzzy gain scheduling control of electro-hydraulic servo speed system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(3): 294-297 (in Chinese).
[20] 张博, 范国勇, 张保平. 基于MATLAB的电液伺服系统模糊PID控制研究[J]. 机械工程与自动化, 2016, 2(1): 169-170. ZHANG B, FAN G Y, ZHANG B P. Research on fuzzy PID control of electro-hydraulic servo system based on MATLAB[J]. Mechanical Engineering & Automation, 2016, 2(1): 169-170 (in Chinese).
[21] 王洪斌, 刘少岗, 李瑶瑶. 基于自适应模糊聚类的T-S模糊辨识方法[J]. 模糊系统与数学, 2014, 28(5): 137-142. WANG H B, LIU S G, LI Y Y. T-S fuzzy identification method based on adaptive fuzzy clustering[J]. Fuzzy Systems and Mathematics, 2014, 28(5): 137-142 (in Chinese).
[22] 朱兴龙, 周骥平. 液压伺服关节自适应模糊神经网络控制补偿方法[J]. 控制理论与应用, 2005, 22(5): 694-698. ZHU X L, ZHOU J P. Hydraulic servo joint adaptive fuzzy neural network control compensation method[J]. Control Theory and Applications, 2005, 22(5): 694-698 (in Chinese).
[23] PRATUMSUWAN P, THONGCHAI S, TANSRIWO-NG S. A hybrid of fuzzy and proportional-integral-derivative controller for electro-hydraulic position servo system[J]. International Journal of Energy Research, 2010, 1(2): 62-67.
[24] SHAO J P, WANG Z W, LI J Y, et al. Rule self-tuning fuzzy-PID controller of electro-hydraulic position servo system[J]. Journal of Central South University, 2010, 41(3): 960-965.

Outlines

/