Fluid Mechanics and Flight Mechanics

A farfield boundary condition for preconditioning method based on characteristic relations

  • LI Huan ,
  • CHEN Jiangtao ,
  • MA Mingsheng ,
  • ZHOU Naichun
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2017-04-27

  Revised date: 2017-07-04

  Online published: 2017-07-04

Abstract

Due to large difference between local flow speed and local sound speed, the numerical method originally devised for computation of high-speed compressible flows will suffer from numerical stiff problems to slow down the convergence rate, when the method is extended to computation of low-speed incompressible flows. After the preconditioning matrix is introduced, the original method will be capable of handling low-speed incompressible problems. However, the widely-used farfield boundary condition of Navier-Stokes equations is no longer appropriate for preconditioning systems since the eigenvalues of the equations are altered. Currently, the farfield boundary condition applied to preconditioning equations is much simplified. In this paper, an improved farfield boundary condition is proposed, which is devised based on characteristic relations. The validity of the proposed boundary condition is demonstrated by several typical cases. It is proved that the preconditioning method with appropriate farfield boundary conditions will improve the convergence rate and accuracy of low-speed incompressible flow computations. When the preconditioning method is applied to transonic flow problems, the efficiency and accuracy of the computations reach the same level as the traditional compressible method. The advantages of the proposed farfield boundary condition over the simplified condition lie in two aspects:the convergence rate is accelerated, and the negative effect of insufficient farfield extent is reduced.

Cite this article

LI Huan , CHEN Jiangtao , MA Mingsheng , ZHOU Naichun . A farfield boundary condition for preconditioning method based on characteristic relations[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(12) : 121364 -121364 . DOI: 10.7527/S1000-6893.2017.121364

References

[1] 肖中云, 江雄, 陈作斌, 等. 低速预处理方法在悬停旋翼模拟中的应用[J]. 航空学报, 2008, 29(2):321-326. XIAO Z Y, JIANG X, CHEN Z B, et al. Application of low speed preconditioning to hovering rotor simulation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2):321-326(in Chinese).[2] POTSDAM M, SANKARAN V, PANDYA S. Unsteady low mach preconditioning with application to rotorcraft flows:AIAA-2007-4473[R]. Reston, VA:AIAA, 2007.[3] XIAO W, SHENG C H, CHEN J P. Numerical study of preconditioned algorithm for rotational flows:AIAA-2005-5126[R]. Reston, VA:AIAA, 2005.[4] VENKATESWARAN S, WEISS J M, MERKLE C L. Propulsion-related flowfields using the preconditioned Navier-Stokes equations:AIAA-1992-3437[R]. Reston, VA:AIAA, 1992.[5] TOURRETTE L. Navier-Stokes simulations of air-intakes in crosswind using local preconditioning:AIAA-2002-2739[R]. Reston, VA:AIAA, 2002.[6] 陈龙, 伍贻兆, 夏健. 基于非定常低速预处理和DES的三角翼数值模拟[J]. 南京航空航天大学学报, 2011, 43(2):159-164. CHEN L, WU Y Z, XIA J. Delta wing numerical simulation using unsteady low speed precondition and DES[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(2):159-164(in Chinese).[7] CHOI Y H, MRKLE C L. The application of preconditioning in viscous flows[J]. Journal of Computational Physics, 1993, 105(2):207-223.[8] VENKATESWARAN S, MERKLE C L. Dual time stepping and preconditioning for unsteady computations:AIAA-1995-0078[R]. Reston, VA:AIAA, 1995.[9] VENKATAKRISHNAN V. Improved convergence of compressible Navier-Stokes solvers:AIAA-1998-2967[R]. Reston, VA:AIAA, 1998.[10] 刘中玉, 张明锋, 郑冠男, 等. 基于预处理HLLEW格式的全速域数值算法[J]. 计算物理, 2016, 33(3):273-282. LIU Z Y, ZHANG M F,ZHENG G N, et al. Preconditioning HLLEW scheme for flows at all Mach numbers[J]. Chinese Journal of Computational Physics, 2016, 33(3):273-282(in Chinese).[11] 白晓征, 郭正, 刘君. 黏性极低速流动的预处理方法研究[J]. 空气动力学学报, 2009, 27(4):451-455. BAI X Z, GUO Z, LIU J. Study of preconditioning methods for very low speed viscous flows[J]. Acta Aerodynamica Sinca, 2009, 27(4):451-455(in Chinese).[12] 刘晨, 王江峰, 伍贻兆. 低马赫数流动中的预处理Euler方程的收敛特性[J]. 航空学报, 2009, 30(5):842-848. LIU C, WANG J F, WU Y Z. Convergence characteristics of preconditioned Euler equations at low Mach numbers[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5):842-848(in Chinese).[13] 韩忠华, 宋文萍, 乔志德. 一种隐式预处理方法及其在定常和非定常流动数值模拟中的应用[J]. 计算物理, 2009, 26(5):679-684. HAN Z H, SONG W P, QIAO Z D. An implicit preconditioning method for steady and unsteady flows[J]. Chinese Journal of Computational Physics, 2009, 26(5):679-684(in Chinese).[14] LIU Z N, RAMAKRISHNAN S V. Preconditioned upwind schemes for simulation of low speed flows on hybrid grids:AIAA-2004-1268[R]. Reston, VA:AIAA, 2004.[15] PANDYA S A, VENKATESWARAN S. Implementation of preconditioned dual-time procedures in overflow:AIAA-2003-0072[R]. Reston, VA:AIAA, 2003.[16] TURKEL E. Preconditioning techniques in computational fluid dynamics[J]. Annual Review of Fluid Mechanics, 1999, 31:385-416.[17] HAUKE G, HUGHES T J R. A comparative study of different set of variables for solving compressible and incompressible flows[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 153(1):1-44.[18] MERKLE C L. Preconditioning methods for viscous flow calculations[J]. Computational Fluid Dynamics Review, 1995, 153:419-436.[19] DARMOFAL D L. Eigenmode analysis of boundary conditions for the one-dimensional preconditioned Euler equations[M]. Cambridge, Massachusetts:Academic Press Professional, Inc., 1998.[20] THOMPSON K W. Time-dependent boundary conditions for hyperbolic systems[M]. Cambridge, Massachusetts:Academic Press Professional, Inc., 1987.[21] BARTH T J. Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations[R]. Moffett Field, California:Lecture notes for the Von Karman Institute for Fluid Dy-namics Lecture Series,1994.[22] UNRAU D,ZINGG D W. Viscous airfoil computations using local preconditioning:AIAA-1997-2027[R]. Reston, VA:AIAA, 1997.[23] 张强, 杨永. 迎风格式的低速预处理及远场边界影响研究[J]. 西北工业大学学报, 2012, 30(3):412-416. ZHANG Q, YANG Y. A better preconditioning method of low Mach number flow with effects of farfield boundary conditions considered[J]. Journal of Northwestern Polytechnical University, 2012, 30(3):412-416(in Chinese).[24] 肖天航, 昂海松, 余少志, 等. 预处理法求解定常/非定常混合网格的全速流场[J]. 空气动力学学报, 2007, 25(4):425-430. XIAO T H, ANG H S, YU S Z, et al. Using preconditioning method to simulate steady/unsteady flows at all speeds on hybrid grids[J]. Acta Aerodynamica Sinca, 2007, 25(4):425-430(in Chinese).[25] WEISS J M, SMITH W A. Preconditioning applied to variable and constant density flows:AIAA-1995-0033[R]. Reston, VA:AIAA, 1995.[26] JAMESON A. Time depended calculations using multigrid with applications to unsteady flows past airfoils and wings:AIAA-1991-1596[R]. Reston, VA:AIAA, 1991.[27] KIM J S, KWON O J. Improvement on block LU-SGS scheme for unstructured mesh Navier-Stokes computa-tions:AIAA-2002-1061[R]. Reston, VA:AIAA, 2002.[28] 张耀冰, 周乃春, 陈江涛. 小展弦比飞翼标模雷诺数影响数值模拟研究[J]. 空气动力学学报, 2015, 33(3):279-288. ZHANG Y B, ZHOU N C, CHENG J T. Numerical investigation of Reynolds number effects on a low-aspect-ratio flying-wing model[J]. Acta Aerodynamica Sinica, 2015, 33(3):279-288(in Chinese).[29] TURKEL E, VATSA V N, RADESPIEL R. Preconditioning methods for low-speed flows:AIAA-1996-2460[R]. Reston, VA:AIAA, 1996.[30] 廖守亿, 王承尧. 预处理方法求解低马赫数流场的边界条件[J]. 国防科技大学学报, 2001, 23(2):52-56. LIAO S Y, WANG C Y. Boundary conditions for solving flowfields at low Mach numbers by preconditioning[J]. Journal of National University of Defense Technology, 2001, 23(2):52-56(in Chinese).[31] GROVE A S, SHAIR F H, PETERSEN E E, et al. An experiment investigation of the steady separated flow past a circle cylinder[J]. Joural of Fluid Mechanics, 2006, 19(1):60-80.[32] ROGERS S E, KWAK D. An upwind differencing scheme for the incompressible Navier-Stokes equations:NASA-1988-101051[R]. Washington, D.C.:NASA, 1988.[33] LIU C, ZHENG X, LIAO C. Preconditioned multigrid methods for unsteady incompressible flows:AIAA-1997-0445[R]. Reston, VA:AIAA, 1997.[34] 牟斌, 肖中云, 刘刚, 等. 基于Roe格式的低速预处理方法研究[J]. 空气动力学学报, 2010, 28(2):125-131. MOU B, XIAO Z Y, LIU G, et al. Low-speed preconditioning for Roe scheme[J]. Acta Aerodynamica Sinica, 2010, 28(2):125-131(in Chinese).[35] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992.[36] 崔鹏程, 邓有奇, 唐静, 等. 基于伴随方程的网格自适应及误差修正[J]. 航空学报, 2016, 37(10):2992-3002. CUI P C, DENG Y Q, TANG J, et al. Adjoint-based grid adaptation and error correction[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):2992-3002(in Chinese).[37] SCHMITT V, CHARPIN F. Pressure distributions on the ONERA M6-wing at transonic mach number[R]. Paris:AGARD, 1979.
Outlines

/