Fluid Mechanics and Flight Mechanics

Applications of shock-fitting technique for compressible flow in cell-centered finite volume methods

  • ZOU Dongyang ,
  • LIU Jun ,
  • ZOU Li
Expand
  • 1. School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China;
    2. School of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian 116024, China

Received date: 2017-04-27

  Revised date: 2017-06-26

  Online published: 2017-06-26

Supported by

National Natural Science Foundation of China (91541117)

Abstract

A shock-fitting technique for cell-centered Finite Volume Method (FVM) is developed in this work. It is flexible to switch among shock-fitting and shock-capturing methods by changing the nature of grid nodes, which are defined as shock nature and common nature. In the shock-fitting method, velocities of shock nodes and downstream states are obtained by solving Rankine-Hugoniot (R-H) relations. The unstructured dynamic grid technique is used for shock tracking and updating the positions of other common nodes. The flux across a shock face equals the basic flux of its upstream cell. During the computational process, the nature of the nodes is allowed to change. Thus, it is easier to apply this method in complex problems, even with topological change. The numerical results show the proposed method is not only of high accuracy, but also able to avoid the troubles in shock-capturing.

Cite this article

ZOU Dongyang , LIU Jun , ZOU Li . Applications of shock-fitting technique for compressible flow in cell-centered finite volume methods[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(11) : 121363 -121363 . DOI: 10.7527/S1000-6893.2017.121363

References

[1] PIROZZOLI S. Numerical methods for high-speed flows[J]. Annual Review of Fluid Mechanics, 2011, 43(1):163-194.
[2] MORETTI G, SALAS M D. Numerical analysis of viscous one-dimensional flows[J]. Journal of Computational Physics, 1970, 5(3):487-506.
[3] SALAS M D. Shock fitting method for complicated two-dimensional supersonic flows[J]. AIAA Journal, 1976, 14(5):583-588.
[4] 贺国宏. 三阶ENN格式及其在高超声速黏性复杂流场求解中的应用[D]. 绵阳:中国空气动力研究与发展中心,1994:6-11. HE G H. Third-order ENN scheme and its application to the calculation of complex hypersonic viscous flows[D]. Mianyang:China Aerodynamics Research and Development Center, 1994:6-11(in Chinese).
[5] LAX P D. Hyperbolic system of conservation laws and the mathematical theory of shock waves[C]//SIAM Regional series on Applied Mathematics, 1973.
[6] HARTEN A. High resolution schemes for hyperbolic conservative laws[J]. Journal of Computational Physics, 1983, 49(3):357-393.
[7] OSHER S, CHAKRAVARTHY S. High resolution schemes and the entropy condition[J]. SIAM Journal on Numerical Analysis, 1984, 21(5):955-984.
[8] CHAKRAVARTHY S, OSHER S. A new class of high accuracy TVD scheme for hyperbolic conservation laws:AIAA-1985-0363[R]. Reston, VA:AIAA, 1985.
[9] YEE H C. Upwind and symmetric shock-capturing schemes:NASA TM-89464[R]. Washington, D.C.:NASA, 1987.
[10] ROE P L. Generalized formulation of TVD Lax-Wendroff schemes:ICASE Report No. 84-53[R]. 1984.
[11] LIU X, DENG X G, MAO M L. High-order behaviors of weighted compact fifth-order nonlinear scheme[J]. AIAA Journal, 2007, 45(8):2093-2097.
[12] QIU J X, SHU C W. On the construction, comparison and local characteristic decomposition for high order central WENO schemes[J]. Journal of Computational Physics, 2002, 183(1):187-209.
[13] ARORA M, ROE P L. On post-shock oscillations due to shock capturing schemes in unsteady flows[J]. Journal of Computational Physics, 1997, 130(1):25-40.
[14] MORETTI G. Thirty-six years of shock-fitting[J]. Computers & Fluids, 2002, 31(4-7):719-723.
[15] RAWAT P S, ZHONG X. On high-order shock-fitting and front-tracking schemes for numerical simulation of shock-disturbance interactions[J]. Journal of Computational Physics, 2010, 229(19):6744-6780.
[16] PRAKASH A, PARSONS N, WANG X, et al. High-order shock-fitting methods for direct numerical simulation of hypersonic flow with chemical and thermal nonequilibrium[J]. Journal of Computational Physics, 2011, 230(23):8474-8507.
[17] KOPRIVA D A. Shock-fitted multidomain solution of supersonic flows[J]. Computer Methods in Applied Mechanics & Engineering, 1999, 175(3-4):383-394.
[18] PACIORRI R, BONFIGLIOLI A. A shock-fitting technique for 2D unstructured grids[J]. Computers & Fluids, 2009, 38(3):715-726.
[19] IVANOV M S, BONFIGLIOLI A, PACIORRI R, et al. Computation of weak steady shock reflections by means of an unstructured shock-fitting solver[J]. Shock Waves, 2010, 20(4):271-284.
[20] PACIORRI R, BONFIGLIOLI A. Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique[J]. Journal of Computational Physics, 2011, 230(8):3155-3177.
[21] BONFIGLIOLI A, GROTTADAUREA M, PACIORRI R, et al. An unstructured, three-dimensional, shock-fitting solver for hypersonic flows[J]. Computers & Fluids, 2013, 73(6):162-174.
[22] BONFIGLIOLI A, PACIORRI R, CAMPOLI L. Unsteady shock-fitting for unstructured grids[J]. International Journal for Numerical Methods in Fluids, 2016, 81(4):245-261.
[23] MORETTI G, ABBETT M. A time-dependent computational method for blunt body flows[J]. AIAA Journal, 1966, 4(12):2136-2141.
[24] 刘君, 邹东阳, 徐春光. 基于非结构动网格的非定常激波装配方法[J]. 空气动力学学报, 2015, 33(1):10-16. LIU J, ZOU D Y, XU C G. An unsteady shock-fitting technique based on unstructured moving grids[J]. Acta Aerodynamica Sinica, 2015, 33(1):10-16(in Chinese).
[25] 刘君, 邹东阳, 董海波. 动态间断装配法模拟斜激波壁面反射[J]. 航空学报, 2016, 37(3):836-846. LIU J, ZOU D Y, DONG H B. A moving discontinuity fitting technique to simulate shock waves impinged on a straight wall[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):836-846(in Chinese).
[26] 刘君, 徐春光, 白晓征. 有限体积方法和非结构动网格[M]. 北京:科学出版社, 2016. LIU J, XU C G, BAI X Z. Finite volume methods and unstructured dynamic grids technique[M]. Beijing:Science Press, 2016(in Chinese).
[27] BATINA J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 1990, 28(8):1381-1388.
[28] LIU J, BAI X Z, GUO Z. A new method for transferring flow information among meshes[J]. Computational Fluid Dynamics Journal, 2007, 15(4):509-514.
[29] LYUBIMOV A N, RUSANOV V V. Gas flow past blunt body, Part Ⅱ Table of the gasdynamic functions:NASA TT F-715[R]. Washington, D.C.:NASA, 1973.
[30] WEEKS T M, DOSANJH D S. Sound generation by shock-vortex interaction[J]. AIAA Journal, 1967, 5(4):660-669.
[31] GRASSO F, PIROZZOLI S. Shock-wave-vortex interactions:Shock and vortex deformations, and sound production[J]. Theoretical and Computational Fluid Dynamics, 2000, 13(6):421-456.

Outlines

/