Fluid Mechanics and Flight Mechanics

Optimization design of aerodynamics and stealth for a flying-wing UAV planform

  • WANG Rong ,
  • YAN Ming ,
  • BAI Peng ,
  • YANG Yunjun ,
  • XU Guowu
Expand
  • China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2017-05-25

  Revised date: 2017-06-23

  Online published: 2017-06-23

Abstract

Aerodynamics and stealth design optimization for a cranked flying-wing Unmanned Aerial Vehicle (UAV) planform is conducted based on the parameterized model and automatic meshing technology combined with the uni-and multi-objective optimization algorithm. The aerodynamic performance is predicted by numerically solving inviscid/viscous models, and the stealth performance is estimated through engineering methods. The optimal design front is given by the multi-objective design optimization. The conflict relationship between the aerodynamic and stealthy characteristics is identified, showing that improvement of Radar Cross Section (RCS) performance will lead to decrease of lift to drag ratio. This further indicates that the design of the flying-wing configuration needs consider the tradeoff between aerodynamics and stealth. Calculation shows that the viscous aerodynamic models should be used in the flying-wing design optimization. The design optimization method of aerodynamic-stealthy integration proposed can provide good foundation for the finer design of the flying-wing configuration of the UAV.

Cite this article

WANG Rong , YAN Ming , BAI Peng , YANG Yunjun , XU Guowu . Optimization design of aerodynamics and stealth for a flying-wing UAV planform[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(S1) : 721532 -721532 . DOI: 10.7527/S1000-6893.2017.721532

References

[1] 高正红, 夏露, 李天, 等. 飞行器气动与隐身性能一体化优化设计方法研究[J]. 飞机设计, 2003(3): 1-5. GAO Z H, XIA L, LI T, et al. Investigation into collaborative optimization design techniques of aircraft aerodynamics and stealth performances[J]. Aircraft Design, 2003(3): 1-5 (in Chinese).
[2] 焦子涵, 张彬乾, 沈冬. 翼型几何参数对隐身特性的影响研究[J]. 机械科学与技术, 2012, 31(12): 1980-1987. JIAO Z H, ZHANG B Q, SHEN D. Investigation on the effects of geometric parameters on airfoils' stealth characteristics[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(12): 1980-1987(in Chinese).
[3] 李天, 武哲, 李敬. 飞机外形参数的气动与隐身综合优化设计[J]. 北京航空航天大学学报, 2001, 27(1): 76-78. LI T, WU Z, LI J. Integrated aerodynamic-stealth optimal design of aircraft configuration parameters[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(1): 76-78 (in Chinese).
[4] 何开锋, 钱炜祺, 刘刚. 飞行器气动隐身一体化设计方法研究[J]. 空气动力学学报, 2006, 24(2): 169-174. HE K F, QIAN W Q, LIU G. Aircraft multi-objective design of aerodynamic and stealthy performance[J]. Acta Aerodynamica Sinica, 2006, 24(2): 169-174 (in Chinese).
[5] 鲍君波, 王刚林, 武哲. 飞翼布局气动方案优选和试验验证[J]. 北京航空航天大学学报, 2012, 38(2): 180-184. BAO J B, WANG G L, WU Z. Optimization and experimental verification for aerodynamic scheme of flying-wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(2): 180-184 (in Chinese).
[6] KULFAN B M, BUSSOLETTI J E. "Fundamental" parametric geometry representations for aircraft component shapes: AIAA-2006-6948[R]. Reston, VA: AIAA, 2006.
[7] KULFAN B M. A universal parametric geometry representation method-CST: AIAA-2007-0062[R]. Reston, VA: AIAA, 2007.
[8] 湛岚, 余雄庆, 沈琼. 大型客机概念设计的外形参数化CAD 模型[J]. 计算机工程与设计, 2009, 30(16): 3887-3890. ZHAN L, YU X Q, SHENG Q. Parametric CAD model of aircraft configuration for civil jets conceptual design[J]. Computer Engineering and Design, 2009, 30(16): 3887-3890 (in Chinese).
[9] 李静, 高正红, 黄江涛, 等. 基于CST参数化方法气动优化设计研究[J]. 空气动力学学报, 2012, 30(4): 443-449. LI J, GAO Z H, HUANG J T, et al. Aerodynamic optimization system based on CST technique[J]. Acta Aerodynamica Sinica, 2012, 30(4): 443-449 (in Chinese).
[10] WANG Z J, SRINIVASAN K. Complex dirty geometry handling with an interior-to-boundary grid generation method: AIAA-2001-2538[R]. Reston, VA: AIAA,2001.
[11] 刘周, 周伟江. 适于黏性计算的自适应笛卡儿网格生成及其应用[J]. 航空学报, 2009, 30(12): 2280-2287. LIU Z, ZHOU W J. Adaptive viscous Cartesian grid generation and application[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2280-2287 (in Chinese).
[12] 黄明恪, 陈红全. 用非结构直角网格和欧拉方程计算运载火箭绕流[J]. 宇航学报, 2002, 23(5): 66-71. HUANG M K, CHEN H Q. Computation of the flow past launch vehicle usipg unstructured cartesian grid and Euler equations[J]. Journal of Astronautics, 2002, 23(5):66-71 (in Chinese).
[13] ROE P. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981,43(2): 357-372.
[14] VAN LEER B. Towards the ultimate conservative difference scheme V: A second order sequel to Godunov's methods[J]. Journal of Computational Physics, 1979, 32(1): 101-136.
[15] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions: AIAA-1993-0880[R]. Reston, VA: AIAA, 1993.
[16] JAMESON A, YOON S. Lower upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal, 1987, 25(2): 929-935.
[17] MENTER F R. Two equation eddy viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[18] 昂海松, 舒永泽, 周建江, 等. 复杂目标RCS计算的新方法——曲面像素法[J]. 电子与信息学报, 2001, 23(10):962-969. ANG H S, SHU Y Z, ZHOU J J, et al. A new method for RCS prediction of complex objects—Curved surface pixel method[J]. Journal of Electronics and Information Technology, 2001, 23(10): 962-969 (in Chinese).
[19] 苏抗, 周建江. 有限姿控能力的低RCS微小卫星姿态实时规划[J]. 航空学报, 2010, 31(9): 1841-1848. SU K, ZHOU J J. Real-time attitude planning for low RCS micro-satellites with limited attitude control ability[J]. Acta Aeronautica et Astronautica Sinica,2010,31(9): 1841-1848 (in Chinese).
[20] 唐焕文, 秦学志. 实用最优化方法[M]. 大连: 大连理工大学出版社, 2005. TANG H W, QIN X Z. Practical methods of optimization[M]. Dalian: Dalian University of Technology Press, 2005 (in Chinese).
[21] DEB K. Multi-objective optimization using evolutionary algorithms[M]. Chichester: John Wiley & Sons, 2001.

Outlines

/