Fluid Mechanics and Flight Mechanics

Measurement technique for turbulence level in compressible fluid by changing overheat ratio of hot-wire

  • DU Yufeng ,
  • LIN Jun ,
  • MA Husheng ,
  • XIONG Neng
Expand
  • China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2017-03-13

  Revised date: 2017-06-13

  Online published: 2017-06-12

Abstract

Turbulence level is important in high speed wind tunnel experiments. Research on measurement techniques for turbulence level in compressible fluid is carried out to satisfy the need of tests with high accuracy in high speed wind tunnel. Based on the law of heat convection, response function of constant temperature hot-wire anemometer is derived in detail. Sensitivities of mass flux and total temperature are obtained, and the algorithm for the turbulence level in compressible fluid is built. Turbulence level measurement tests are carried out with Mach number varying from 0.3 to 0.6. Using the response function proposed above as a mathematical model, the data are fitted based on the hyperbola fitting method. The turbulence level is around 0.3%-0.6% when the Mach number varies from 0.3 to 0.6. The frequency spectrum of the hot-wire output voltage is analyzed. According to the characteristics of the frequency spectrum, the signal is processed using low-pass filtering, and the effect of voltage spike in the time domain on the solution for turbulence level is reduced effectively. The turbulence level is around 0.1%-0.3% after filtering with Mach number ranging from 0.3 to 0.6, and the results are almost the same with results obtained previously. The results validate correctness of the solution for turbulence level and feasibility of application of the technique of changing the overheat ratio of the constant temperature hot-wire anemometer for turbulence level in compressible fluid.

Cite this article

DU Yufeng , LIN Jun , MA Husheng , XIONG Neng . Measurement technique for turbulence level in compressible fluid by changing overheat ratio of hot-wire[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(11) : 121236 -121236 . DOI: 10.7527/S1000-6893.2017.121236

References

[1] ZAKS H A. 实验空气动力学原理[M]. 詹承禹, 译. 北京:国防工业出版社, 1956:42-44. ZAKS H A. Experimental aerodynamics[M]. ZHAN C Y, translated. Beijing:National Defense Industry Press, 1956:42-44(in Chinese).
[2] DRYDEN H L, KUETHE A M. The measurement of fluctuations of air speed by the hot-wire anemometer:NACA-REPORT-320[R]. Washington,D. C.:NACA, 1930.
[3] DRYDEN H L, KUETHE A M. Effect of turbulence in wind tunnel measurements:NACA-REPORT-342[R]. Washington, D. C.:NACA, 1931.
[4] DRYDEN H L, SCHUBAUER G B, MOCK W C, et al. Measurements of intensity and scale of wind-tunnel turbulence and their relation to the critical Reynolds number of spheres:NACA-REPORT-581[R]. Washington, D. C.:NACA, 1937.
[5] KING L V. On the convection of heat from small cylinders in a stream of fluid:Determination of the convection constants of small platinum wires with application to hot-wire anemometry[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Science, 1914, 214:373-432.
[6] RESHOTKO E, SARIC W S, NAGIB H M. Flow quality issues for large wind tunnel:AIAA-1997-0225[R]. Reston, VA:AIAA, 1997.
[7] BRUUN H H. Hot-wire anemometry:Principles and signal analysis[M]. New York:Oxford University Press, 1995:304-316.
[8] HORSTMAN C C, ROSE W C. Hot-wire anemometry in transonic flow:NASA-TM-X-62495[R]. Washington, D.C.:NASA, 1976.
[9] STAINBACK P C, JOHNSON C B. Preliminary measurements of velocity, density and total temperature fluctuations in compressible subsonic flow:AIAA-1983-0384[R]. Reston, VA:AIAA, 1983.
[10] JONES G S, STAINBACK P C, HARRIES C D, et al. Flow quality measurements for the Langley 8-foot transonic pressure tunnel LFC experiment:AIAA-1989-0150[R]. Reston, VA:AIAA, 1989.
[11] JONES G S, STAINBACK P C, NAGABUSHANA K A. A comparison of calibration techniques for hot-wires operated in subsonic compressible slip flows:AIAA-1992-4007[R]. Reston, VA:AIAA, 1992.
[12] NAGABUSHANA K A, STAINBACK P C, JONES G S. A rational technique for calibrating hot-wire probes in subsonic to supersonic speeds:AIAA-1994-2536[R]. Reston, VA:AIAA, 1994.
[13] 杜钰锋, 林俊, 马护生, 等. 可压缩流体恒温热线风速仪校准方法[J]. 航空学报, 2017, 38(6):120600. DU Y F, LIN J, MA H S, et al. Calibration method for constant temperature hot-wire anemometer for compressible fluid[J]. Acta Aeronautics et Astronautics Sinica, 2017, 38(6):120600(in Chinese).
[14] KOVASZNAY L S G. The hot-wire anemometer in supersonic flow[J]. Journal of the Aeronautical Sciences, 1950, 17(9):565-572.
[15] KOVASZNAY L S G. Turbulence in supersonic flow[J]. Journal of the Aeronautical Sciences, 1953, 20(10):657-682.
[16] 何克敏, 白存儒. 极低湍流度下翼型近场尾流雷诺切应力的分布[J]. 应用力学学报, 1997, 14(2):19-26. HE K M, BAI C R. The Reynolds shear stress distribution in the near wake of an airfoil at very low turbulence level[J]. Chinese Journal of Applied Mechanics, 1997, 14(2):19-26(in Chinese).
[17] 王庶, 米建春. 大湍流度对超低雷诺数下翼型受力及绕流的影响[J]. 航空学报, 2011, 32(1):41-48. WANG S, MI J C. Effect of large turbulence intensity on airfoil load and flow[J]. Acta Aeronautics et Astronautics Sinica, 2011, 32(1):41-48(in Chinese).
[18] 王晋军, 兰世隆. 沟槽面湍流边界层湍流度分布[J]. 北京航空航天大学学报, 1998, 24(2):178-180. WANG J J, LAN S L. Turbulence intensities distributions over a riblets surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(2):178-180(in Chinese).
[19] 许宏庆, 费维扬. 用LDV系统测量转盘萃取塔内流场[J]. 实验力学, 1995, 10(4):316-322. XU H Q, FEI W Y. The measurement of flow field in a rotating disc contactor with LDV[J]. Journal of Experimental Mechanics, 1995, 10(4):316-322(in Chinese).
[20] 沈建平, 吴承雄, 朱隆碧, 等. 用LDV研究柴油机不同燃烧室对缸内湍流场的影响[J]. 内燃机学报, 1995, 13(1):19-27. SHEN J P, WU C X, ZHU L B, et al. Investigation on effects of different piston-bowl structures on in-cylinder turbulent flow field of diesel engine by LDV[J]. Transactions of CSICE, 1995, 13(1):19-27(in Chinese).
[21] 杨世铭, 陶文铨. 传热学[M]. 北京:高等教育出版社, 2006:197-202. YANG S M, TAO W Q. Heat transfer[M]. Beijing:Higher Education Press, 2006:197-202(in Chinese).
[22] BALDWIN L V, SANDBORN V A, LAURENCE J C. Heat transfer from transverse and yawed cylinders in continuum, slip, and free molecule air flows[J]. Journal of Heat Transfer, 1960, 82(2):77-86.
[23] JANSSEN J M L, ENSING L, VAN ERP J B. A constant-temperature-operation hot-wire anemometer[J]. Proceedings of the IRE, 1959, 46(4):555-567.
[24] INCROPERA F P, DEWITT D P, BERGMAN T L, 等. 传热和传质基本原理[M]. 葛新石, 叶宏, 译. 北京:化学工业出版社, 2009:36-41, 572. INCROPERA F P, DEWITT D P, BERGMAN T L, et al. Fundamentals of heat and mass transfer[M]. GE X S, YE H, translated. Beijing:Chemical Industry Press, 2009:36-41, 572(in Chinese).
[25] 盛森芝. 热线热膜流速计[M]. 北京:中国科学技术出版社, 2003:17-22. SHENG S Z. Hot wire/film anemometer[M]. Beijing:Science and Technology of China Press, 2003:17-22(in Chinese).
[26] ROSE W C, MCDAID E P. Turbulence measurement in transonic flow[J]. AIAA Journal, 1977, 15(9):1368-1370.
[27] BOBBITT C, EVERHART J, FOSTER J, et al. National transonic facility characterization status:AIAA-2000-0293[R]. Reston, VA:AIAA, 2000.
[28] AMAYA M A, MURTHY S V. Flow quality measurements in the NASA Ames upgraded 11-by 11-foot transonic wind tunnel:AIAA-2000-2681[R]. Reston, VA:AIAA, 2000.
[29] KRYNYTZKY A J, HERGERT D W. Boeing transonic wind tunnel upgrade assessment:AIAA-2002-2782[R]. Reston, VA:AIAA, 2002.

Outlines

/