Review

Review of detumbling technologies for active removal of uncooperative targets

  • LU Yong ,
  • LIU Xiaoguang ,
  • ZHOU Yu ,
  • LIU Chongchao
Expand
  • School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

Received date: 2017-04-05

  Revised date: 2017-06-09

  Online published: 2017-06-09

Supported by

National Natural Science Foundation of China (51675115)

Abstract

Ever increasing space debris poses a great threat to the functioning spacecraft on orbit, and there is thus an urgent need for active removal of space debris. Space debris such as upper stage rocket bodies and expired satellites has lost attitude adjustment ability, and drifts freely in an uncontrolled state. Due to the perturbation torque on orbit involving solar pressure, gravitational gradient and the residual angular momentum before failure, tumbling motion of the uncooperative target can appear. Therefore, conducting a detumbling operation of the target before capturing is a suitable choice to minimize collision risk brought by direct contact. Based on analysis of the tumbling motion of the typical uncooperative targets including the upper stage rocket bodies and expired satellites, the detumbling process is introduced, and the proposed contact and non-contact detumbling methods in literature are reviewed. The key technologies including motion estimation and dynamic parameter identification, and detumbling control are analyzed. This study would provide some references for the development of active debris removal technology in China.

Cite this article

LU Yong , LIU Xiaoguang , ZHOU Yu , LIU Chongchao . Review of detumbling technologies for active removal of uncooperative targets[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(1) : 21302 -021302 . DOI: 10.7527/S1000-6893.2017.021302

References

[1] SHAN M, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Sciences, 2016, 80:18-32.[2] ABAD A F, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68:1-26.[3] SELLMAIER F, BOGE T, SPURMANN J, et al. On-orbit servicing missions:Challenges and solutions for spacecraft operations[C]//SpaceOps 2010 Conference. Reston, VA:AIAA, 2010.[4] 崔乃刚, 王平, 郭继峰, 等. 空间在轨服务技术发展综述[J]. 宇航学报, 2007, 28(4):805-811. CUI N G, WANG P, GUO J F, et al. A review of on-orbit servicing[J]. Journal of Astronautics, 2007, 28(4):805-811(in Chinese).[5] 翟光, 仇越, 梁斌, 等. 在轨捕获技术发展综述[J]. 机器人, 2008, 30(5):467-480. ZHAI G, QIU Y, LIANG B, et al. Development of on-orbit capture technology[J]. Robot, 2008, 30(5):467-480(in Chinese).[6] XU W F, LIANG B, XU Y. Survey of modeling, planning, and ground verification of space robotic systems[J]. Acta Astronautica, 2011, 68(11):1629-1649.[7] MARSHALL H K, BRADLEY B, ROBERT B, et al. Engineering issues for all major modes of in situ space debris capture[C]//AIAA SPACE 2010 Conference & Exposition. Reston, VA:AIAA, 2010.[8] LIOU J C. An active debris removal parametric study for LEO environment remediation[J]. Advances in Space Research, 2011, 47(11):1865-1876.[9] 曹喜滨, 李峰, 张锦绣. 空间碎片天基主动清除技术发展现状及趋势[J]. 国防科技大学学报, 2015, 37(4):117-120. CAO X B, LI F, ZHANG J X. Development status and tendency of active debris removal[J]. Journal of National University of Defense Technology, 2015, 37(4):117-120(in Chinese).[10] LIN H Y, ZHAO C Y. Evolution of the rotational motion of space debris acted upon by eddy current torque[J]. Astrophysics and Space Science, 2015, 357(2):1-8.[11] GOMEZ N O, WALKER S J I. Earth's gravity gradient and eddy currents effects on the rotational dynamics of space debris objects:Envisat case study[J]. Advances in Space Research, 2015, 56(3):494-508.[12] BENNETT T, STEVENSON D, HOGAN E, et al. Prospects and challenges of touchless electrostatic detumbling of small bodies[J]. Advances in Space Research, 2015, 56(3):557-568.[13] SUGAI F. Detumbling a malfunctioning satellite by using an eddy current brake[D]. Sendai:Tohoku University, 2014.[14] PRALY N, HILLION M, BONNAL C, et al. Study on the eddy current damping of the spin dynamics of space debris from the Ariane launcher upper stages[J]. Acta Astronautica, 2012, 76:145-153.[15] 徐福祥. 用地球磁场和重力场成功挽救风云一号(B)卫星的控制技术[J]. 宇航学报, 2001, 22(2):1-11. XU F X. Technique of successful rescue of FY-1B meteorological satellite by using the geomagnetic field and the gravitational field[J]. Journal of Astronautics, 2001, 22(2):1-11(in Chinese).[16] BONNAL C. Active debris removal:Current status of activities in CNES[C]//Proceedings of the 5th Space Debris Workshop. Tokyo:JAXA, 2013:47-59.[17] NISHIDA S I, KAWAMOTO S. Strategy for capturing of a tumbling space debris[J]. Acta Astronautica, 2011, 68(1):113-120.[18] NAKAJIMA Y, MITANI S, TANI H, et al. Detumbling space debris via thruster plume impingement[C]//AIAA/AAS Astrodynamics Specialist Conference, AIAA SPACE Forum. Reston, VA:AIAA, 2016.[19] PETERS T V, OLMOS E D. COBRA contactless detumbling[J]. CEAS Space Journal, 2016, 8(3):143-165.[20] YOUNGQUIST R C, NURGE M A, STARR SO, et al. A slowly rotating hollow sphere in a magnetic field:First steps to de-spin a space object[J]. American Journal of Physics, 2016, 84(3):181-191.[21] 赵一鸣. 基于库仑力的非接触式目标消旋研究[D]. 哈尔滨:哈尔滨工业大学, 2016. ZHAO Y M. Research on non-contact attitude control based on the coulomb force[D]. Harbin:Harbin Institute of Technology, 2016(in Chinese).[22] 徐文福, 刘厚德, 李成, 等. 双臂空间机器人捕获运动目标的自主路径规划[J]. 机器人, 2012, 34(6):704-714. XU W F, LIU H D, LI C, et al. Autonomous path planning of dual-arm space robot for capturing moving target[J]. Robot, 2012, 34(6):704-714(in Chinese).[23] HUANG P F, WANG D K, MENG Z J, et al. Adaptive postcapture backstepping control for tumbling tethered space robot-target combination[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(1):150-156.[24] 卢伟, 耿云海, 陈雪芹, 等. 在轨服务航天器对目标的相对位置和姿态耦合控制[J]. 航空学报, 2011, 32(5):857-865. LU W, GENG Y H, CHEN X Q, et al. Coupled control of relative position and attitude for on-orbit servicing spacecraft with respect to target[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):857-865(in Chinese).[25] AN X Y, REN Z, LU W. Terminal sliding mode control of attitude synchronization for autonomous docking to a tumbling satellite[C]//Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC). Piscataway, NJ:IEEE Press, 2013:2760-2763.[26] BYLARD A, MACPHERSON R, HOCKMAN B, et al. Robust capture and deorbit of rocket body debris using controllable dry adhesion[C]//2017 IEEE Aerospace Conference, Piscataway, NJ:IEEE Press, 2017.[27] 韦文书, 荆武兴, 高长生. 捕获非合作目标后航天器的自主稳定技术研究[J]. 航空学报, 2013, 34(7):1520-1530. WEI W S, JING W X, GAO C S. Research automatic stability technology of spacecraft assembly with captured non-cooperative targets on orbit[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1520-1530(in Chinese).[28] MATUNAGA S, KANZAWA T, OHKAMI Y. Rotational motion-damper for the capture of an uncontrolled floating satellite[J]. Control Engineering Practice, 2001, 9(2):199-205.[29] KAWAMOTO S, MATSUMOTO K, WAKABAYASHI S. Ground experiment of mechanical impulse method for uncontrollable satellite capturing[C]//Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space (i-SAIRAS). Montreal:Canadian Space Agency, 2001.[30] WANG D K, HUANG P F, MENG Z J. Coordinated stabilization of tumbling targets using tethered space manipulators[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):2420-2432.[31] HUANG P F, ZHANG F, MENG Z J, et al. Adaptive control for space debris removal with uncertain kinematics, dynamics and states[J]. Acta Astronautica, 2016, 128:416-430.[32] HUANG P F, WANG M, MENG Z J, et al. Reconfigurable spacecraft attitude takeover control in post-capture of target by space manipulators[J]. Journal of the Franklin Institute, 2016, 353(9):1985-2008.[33] ZHANG F, SHARF I, MISRA A, et al. On-line estimation of inertia parameters of space debris for its tether-assisted removal[J]. Acta Astronautica, 2015, 107:150-162.[34] HOVELL K, ULRICH S. Attitude stabilization of an uncooperative spacecraft in an orbital environment using visco-elastic tethers[C]//AIAA Guidance, Navigation, and Control Conference, AIAA SciTech Forum. Reston, VA:AIAA, 2016.[35] KUMAR R, SEDWICK R J. Despinning orbital debris before docking using laser ablation[J]. Journal of Spacecraft and Rockets, 2015, 52(4):1129-1134.[36] BENNETT T, SCHAUB H. Touchless electrostatic three-dimensional detumbling of large axi-symmetric debris[J]. The Journal of the Astronautical Sciences, 2015, 62(3):233-253.[37] SUGAI F, ABIKO S, TSUJITA T, et al. Detumbling an uncontrolled satellite with contactless force by using an eddy current brake[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ:IEEE Press, 2013:783-788.[38] SUGAI F, ABIKO S, TSUJITA T, et al. Development of an eddy current brake system for detumbling malfunctioning satellites[C]//2012 IEEE/SICE International Symposium on System Integration (SⅡ). Piscataway, NJ:IEEE Press, 2012:325-330.[39] GOMEZ N O, WALKER S J I. Guidance, navigation, and control for the eddy brake method[J]. Journal of Guidance, Control, and Dynamics, 2017,40(1):52-68.[40] GOMEZ N O, WALKER S J I. Eddy currents applied to de-tumbling of space debris:Analysis and validation of approximate proposed methods[J]. Acta Astronautica, 2015, 114:34-53.[41] DARPA TACTICAL TECHNOLOGY OFFIC. Broad agency announcement:Phoenix technologies project page[EB/OL]. (2011)[2017-02-17]. http://www.darpa.mil/tto/progra-ms/Phoenix.html.[42] BISCHOF B, KERSTEIN L, STARKE J, et al. ROGER-Robotic geostationary orbit restorer[J]. Science and Technology Series, 2004, 109:183-193.[43] KAISER C, SJÖBERG F, DELCURA J M, et al. SMART-OLEV-An orbital life extension vehicle for servicing commercial spacecrafts in GEO[J]. Acta Astronautica, 2008, 63(1):400-410.[44] 王志超. 非合作航天器视觉位姿测量方法的研究[D].哈尔滨:哈尔滨工业大学, 2013. WANG Z C. Research on visual measurement method of non-cooperative spacecraft[D]. Harbin:Harbin Institute of Technology, 2013(in Chinese).[45] 蔡晗, 张景瑞, 翟光, 等. GEO非合作目标超近距相对位姿视觉测量[J]. 宇航学报, 2015, 36(6):715-722. CAI H, ZHANG J R, ZHAI G, et al. Relative pose determination for GEO non-cooperative spacecraft under the ultra-close distance[J]. Journal of Astronautics, 2015, 36(6):715-722(in Chinese).[46] KELSEY J M, BYRNE J, COSGROVE M, et al. Vision-based relative pose estimation for autonomous rendezvous and docking[C]//2006 IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2006.[47] 任宇琪. 面向空间非合作目标捕获的位姿测量方法研究[D]. 哈尔滨:哈尔滨工业大学, 2015. REN Y Q. Research on pose estimation methods of non-cooperative space objects towards space grapple applications[D]. Harbin:Harbin Institute of Technology, 2015(in Chinese).[48] 郭瑞科, 王立, 朱飞虎, 等. 空间非合作目标的多视角点云配准算法研究[J]. 中国空间科学技术, 2016, 36(5):32-39. GUO R K, WANG L, ZHU F H, et al. Research on registration algorithm of multiple-view point cloud for non-cooperative spacecraft[J]. Chinese Space Science and Technology, 2016, 36(5):32-39(in Chinese).[49] LIM T W, RAMOS P F, O'DOWD M C. Edge detection using point cloud data for noncooperative pose estimation[J]. Journal of Spacecraft and Rockets, 2017,54(2):500-505.[50] 孙俊, 张世杰, 马也, 等. 空间非合作目标惯性参数的Adaline网络辨识方法[J]. 航空学报, 2016, 37(9):2799-2808. SUN J, ZHANG S J, MA Y, et al. Adaline network-based identification method of inertial parameters for space uncooperative targets[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2799-2808(in Chinese).[51] XU W F, HU Z H, ZHANG Y, et al. On-orbit identifying the inertia parameters of space robotic systems using simple equivalent dynamics[J]. Acta Astronautica, 2017, 132:131-142.[52] CHU Z Y, MA Y, HOU Y Y, et al. Inertial parameter identification using contact force information for an unknown object captured by a space manipulator[J]. Acta Astronautica, 2017, 131:69-82.[53] GÓMEZ N O, WALKER S J, JANKOVIC M, et al. Control analysis for a contactless de-tumbling method based on eddy currents:Problem definition and approximate proposed solutions[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2016.[54] CAUBET A, BIGGS J D. Design of an attitude stabilization electromagnetic module for detumbling uncooperative targets[C]//2014 IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2014:1-13.[55] SILANI E, LOVERA M. Magnetic spacecraft attitude control:a survey and some new results[J]. Control Engineering Practice, 2005, 13(3):357-371.[56] CLERC S, RENAULT H, LOSA D. Control of a magnetic capture device for autonomous in-orbit rendezvous[C]//18th IFAC World Congress. Milano:IFAC, 2011:2084-2089.[57] YUDINTSEV V, ASLANOV V. Detumbling space debris using modified yo-yo mechanism[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(3):714-721.[58] YOSHIKAWA S, YAMADA K. Impulsive control for angular momentum management of tumbling spacecraft[J]. Acta Astronautica, 2007, 60(10-11):810-819.
Outlines

/