ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Rotor noise reduction mechanism and parameter analysis of HHC method
Received date: 2016-11-28
Revised date: 2017-06-06
Online published: 2017-06-06
Supported by
National Natural Science Foundation of China (11572156);Jiangsu Innovation Program for Graduate Education (KYLX15_0250);Priority Academic Program Development of Jiangsu Higher Education Institutions
Rotor blade-vortex interaction (BVI) noise is one of the main objectives of rotor aerodynamic noise reduction.The higher harmonic control (HHC) method has been demonstrated to be an effective rotor noise reduction method.To obtain noise reduction effects,noise reduction mechanism and parameter effects of the HHC method,a CFD method for simulating blade-vortex interaction is established based on moving-embedded grid method and compressible Reynolds averaged Navier-Stokes (RANS) equations.Based on the previous flowfield calculations and FW-H equations,a noise prediction method CFD/FW-H is established to predict the BVI noise.The case of BO-105 rotor with HHC is calculated using the proposed method.The calculation results obtained by simulating different CFD cases demonstrate that the sound pressure levels of the case with HHC are reduced by 4-7 dB during low speed descent.The effects of the frequency,phase and the amplitude of HHC on rotor BVI noise control have been analyzed.Some conclusions about relative parameter effect rules have been obtained and the mechanism of HHC has been further explained based on the influence of amplitude on noise reduction effects of HHC.
CHEN Siyu , ZHAO Qijun , NI Tongbing , ZHU Zheng . Rotor noise reduction mechanism and parameter analysis of HHC method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(10) : 121000 -121000 . DOI: 10.7527/S1000-6893.2017.121000
[1] YU Y H. Rotor blade-vortex interaction noise[J]. Progress in Aerospace Sciences, 2000, 36(2):97-115.
[2] HARDIN J C, LAMKIN S L. Concepts for reduction of blade-vortex interaction noise[J]. Journal of Aircraft, 1986, 24(2):120-125.
[3] BROOKS T F, BOOTH E R, JOLLY J R, et al. Reduction of blade-vortex interaction noise through higher harmonic pitch control[J]. Journal of the American Helicopter Society, 1990, 35(1):86-91.
[4] SPLETTSTOESSER W R, SCHULTZ K J, KUBE R, et al. A higher harmonic control test in the DNW to reduce impulsive BVI noise[J]. Journal of the American Helicopter Society, 1994, 39(4):3-13.
[5] BEAUMIER P, PRIEUR J, RAHIER G, et al. Effect of higher harmonic control on helicopter rotor blade-vortex interaction noise:Prediction and initial validation[C]//75th Fluid Dynamics Panel Symposium on Aerodynamics and Aeroacoustics of Rotorcraft, Berlin, Germany, 1994.
[6] YU Y H, TUNG C, WALL B G V D,et al. The HART-Ⅱ test:Rotor wakes and aeroacoustics with higher-harmonic pitch control (HHC) inputs[C]//American Helicopter Society 58th Annual Forum, 2002:1-11.
[7] 史勇杰, 招启军, 徐国华. 旋翼桨-涡干扰气动特性计算及参数影响研究[J]. 航空学报, 2010, 31(6):1106-1114. SHI Y J, ZHAO Q J, XU G H. Numerical calculation and parametric study of aerodynamics of rotor blade-vortex interaction[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1106-1114.
[8] 冯剑波, 陆洋, 徐锦法, 等. 旋翼桨-涡干扰噪声开环桨距主动控制研究[J]. 航空学报, 2014, 35(11):2901-2909. FENG J B, LU Y, XU J F, et al. Research on the effect of open-loop active blade-pitch control on rotor BVI noise alleviation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2901-2909(in Chinese).
[9] SETH P, RAMACHANDRAN A, MOHAN R. A mechanism to generate higher harmonic control for swash plates in helicopters[C]//Asian-Australian Rotorcraft 4th Annual Forum, 2015.
[10] MALOVRH B, GANDHI F. Localized individual blade root pitch control for helicopter blade-Vortex interaction noise reduction[J]. Journal of the American Helicopter Society, 2010, 55(55):32007-1-32007-12.
[11] 朱正, 招启军. 低HSI噪声旋翼桨尖外形优化设计方法[J]. 航空学报, 2015, 36(5):1442-1452. ZHU Z, ZHAO Q J. Optimization design method for rotor blade-tip shape with low HSI noise characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1442-1452(in Chinese).
[12] SONG W P, HAN Z H, QIAO Z D. Prediction of hovering rotor noise based on Reynolds-averaged Navier-Stokes simulation[J]. Journal of Aircraft, 2007, 44(4):1391-1394.
[13] ZHAO Q J, XU G H, ZHAO J G. New hybrid method for predicting the flowfields of helicopter rotors[J]. Journal of Aircraft, 2006, 43(2):372-380.
[14] MEAKIN R L. A new method for establishing intergrid communication among systems of overset grids:AIAA-1991-1586[R]. Reston:AIAA, 1991.
[15] ROE P L. Approximate Riemann solvers, parameter vectors and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.
[16] VAN LEER B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136.
[17] DI F P. A new boundary integral formulation for the prediction of sound radiation[J]. Journal of Sound and Vibration, 1997, 202(4):491-509.
[18] BRENTNER K S, FARASSAT F. Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces[J]. AIAA Journal, 1998, 36(8):1379-1386.
[19] CROSS J L, TU W. Tabulation of data from the tip aerodynamics and acoustics test:NACA TM-102280[R]. Washington, D.C.:NACA, 1990.
[20] YU Y H, TUNG C, GALLMAN J, et al. Aerodynamics and acoustics of rotor blade-vortex interactions[J]. Journal of Aircraft, 1995, 32(5):970-977.
[21] KESSLER C. Active rotor control for helicopters:Motivation and survey on higher harmonic control[J]. CEAS Aeronautical Journal, 2011, 1(1):1-20.
/
〈 | 〉 |