Material Engineering and Mechanical Manufacturing

Deployable unit 3R-3URU and its application in deployable truss antenna

  • LIU Wenlan ,
  • XU Yundou ,
  • YAO Jiantao ,
  • CHEN Liangliang ,
  • WANG Hui ,
  • ZHAO Yongsheng
Expand
  • 1. Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, China;
    2. Key Laboratory of Advanced Forging & Stamping Technology and Science of Ministry of Education, Yanshan University, Qinhuangdao 066004, China;
    3. China Academy of Space Technology(Xi'an), Xi'an 710100, China

Received date: 2017-03-27

  Revised date: 2017-06-02

  Online published: 2017-06-02

Supported by

National Natural Science Foundation of China (51675458); Key Project of Natural Science Foundation of Hebei Province (E2017203335); Youth Top Talent Project of Hebei Province Higher Education (BJ2017060)

Abstract

A spatial deployable unit 3R-3URU with one Degree of Freedom (DoF) is proposed. The DoF of the single closed-loop mechanism RURUR is analyzed, based on the screw theory and the modified G-K formula. The analytical expression for the velocities of active joints and passive joints of the mechanism RURUR are then established. According to the velocity expression and the structural characteristic that three RURUR mechanisms share their first and last revolute joints, the DoF of the 3R-3URU mechanism is derived. The geometrical relationship among the positions and directions of all joints is also obtained when the 3R-3URU mechanism has one DoF. Novel deployable mechanisms are obtained by applying the 3R-3URU mechanism to the 3RR-3RRR tetrahedral unit and a deployable truss antenna composed of the tetrahedral units, and the novel mechanisms have two types of DoFs:movement and orientation adjustment. DoF analysis and application of the 3R-3URU deployable unit are verified by the Adams software. The proposed deployable unit 3R-3URU has the advantages of one DoF, simple structure, and single type of joints, and can be applied to the supporting mechanism of deployable truss antennas with a curved surface to achieve a large folding ratio.

Cite this article

LIU Wenlan , XU Yundou , YAO Jiantao , CHEN Liangliang , WANG Hui , ZHAO Yongsheng . Deployable unit 3R-3URU and its application in deployable truss antenna[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(11) : 421285 -421285 . DOI: 10.7527/S1000-6893.2017.421285

References

[1] AKGVN Y, GANTES C J, SOBEK W, et al. A novel adaptive spatial scissor-hinge structural mechanism for convertible roofs[J]. Engineering Structures, 2011, 33(4):1365-1376.
[2] AKGVN Y, GANTES C J, KALOCHAIRETIS K E, et al. A novel concept of convertible roofs with high transformability consisting of planar scissor-hinge structures[J]. Engineering Structures, 2010, 32(9):2873-2883.
[3] LANGBECKER T. Kinematic analysis of deployable scissor structures[J]. International Journal of Space Structures, 1999, 14(1):1-15.
[4] ZHAO J S, CHU F L, FENG Z J. The mechanism theory and application of deployable structures based on SLE[J]. Mechanism and Machine Theory, 2009, 44(2):324-335.
[5] SUN Y T, WANG S M, LI J F, et al. Mobility analysis of the deployable structure of SLE based on screw theory[J]. Chinese Journal of Mechanical Engineering, 2013, 26(4):793-800.
[6] 李端玲, 张忠海, 于振. 球面剪叉可展机构的运动特性分析[J]. 机械工程学报, 2013, 49(13):1-7. LI D L, ZHANG Z H, YU Z. Kinematic characteristic analysis of spherical scissors deployable mechanisms[J]. Journal of Mechanical Engineering, 2013, 49(13):1-7(in Chinese).
[7] 李波, 杨毅. 星载平面可展天线支撑桁架的结构效率优化[J]. 航空学报, 2015, 36(12):3853-3860. LI B, YANG Y. Optimization for structure efficiency of a deployable spaceborne truss with flat panel antennas[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3853-3860(in Chinese).
[8] CHERNIAVSKY A G, GULYAYEV V I, GAIDAICHUK V V, et al. Large deployable space antennas based on usage of polygonal pantograph[J]. Journal of Aerospace Engineering, 2005, 18(3):139-145.
[9] CHU Z R, DENG Z Q, QI X Z, et al. Modeling and analysis of a large deployable antenna structure[J]. Acta Astronautica, 2014, 95(1):51-60.
[10] WANG Y, LIU R Q, YANG H, et al. Design and deployment analysis of modular deployable structure for large antennas[J]. Journal of Spacecraft and Rockets, 2015, 52(4):1101-1111.
[11] LU S N, ZLATANOV D, DING X L, et al. A new family of deployable mechanisms based on the Hoekens linkage[J]. Mechanism and Machine Theory, 2014, 73:130-153.
[12] 杨毅, 丁希仑. 四棱锥单元平板式可展开收拢机构的运动特性分析[J]. 航空学报, 2010, 31(6):1257-1265. YANG Y, DING X L. Kinematic analysis of a plane deployable mechanism assembled by four pyramid cells[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1257-1265(in Chinese).
[13] 杨毅, 丁希仑. 基于空间多面体向心机构的伸展臂设计研究[J]. 机械工程学报, 2011, 47(5):26-34. YANG Y, DING X L. Design and analysis of mast based on spatial polyhedral linkages mechanism along radial axes[J]. Journal of Mechanical Engineering, 2011, 47(5):26-34(in Chinese).
[14] DING X L, YANG Y, DAI J S. Design and kinematic analysis of a novel prism deployable mechanism[J]. Mechanism and Machine Theory, 2013, 63:35-49.
[15] VU K K, RICHARD J Y, ANANDASIVAM K. Deployable tension-strut structures:from concept to implementation[J]. Journal of Constructional Steel Research, 2006, 62(3):195-209.
[16] 陈向阳, 关富玲. 六棱柱单元可展抛物面天线结构设计[J]. 宇航学报, 2001, 22(1):75-78. CHEN X Y, GUAN F L. A large deployable hexapod paraboloid antenna[J]. Journal of Astronautics, 2001, 22(1):75-78(in Chinese).
[17] 杨玉龙, 关富玲, 侯国勇, 等. 基于结构解析模型法可展桁架天线结构初步设计[J]. 中国机械工程, 2009, 20(16):1969-1973. YANG Y L, GUAN F L, HOU G Y, et al. Deployable tetrahedral truss antenna initial structural design based on interpretative structural model analysis[J]. China Mechanical Engineering, 2009, 20(16):1969-1973(in Chinese).
[18] XU Y, GUAN F L. Structure-electronic synthesis design of deployable truss antenna[J]. Aerospace Science and Technology, 2013, 26(1):259-267.
[19] CHEN Y, YOU Z. On mobile assemblies of Bennett linkages[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2008, 464(2093):1275-1293.
[20] CHEN Y, YOU Z, TARNAI T. Three fold-symmetric Bricard linkages for deployable structures[J]. International Journal of Solids and Structures, 2005, 42(8):2287-2301.
[21] QI X Z, DENG Z Q, LI B, et al. Design and optimization of large deployable mechanism constructed by Myard linkages[J]. CEAS Space Journal, 2013, 5(3):147-155.
[22] 黄志荣, 宋燕平, 郑士昆, 等. 偏馈式构架反射器构型设计与展开协调性分析[J]. 机械科学与技术, 2016, 35(11):1791-1796. HUANG Z R, SONG Y P, ZHENG S K, et al. Analysis of configuration design and deployable coordination of offset-fed truss reflector[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(11):1791-1796(in Chinese).
[23] LIU W L, XU Y D, ZHAO Y S, et al. DOF and kinematic analysis of a deployable truss antenna assembled by tetrahedral elements[C]//Lecture Notes in Electrical Engineering, 2017, 408:855-868.
[24] FANG H, SHOOK L, LIN J K H, et al. A large and high radio frequency deployable reflector[C]//3rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2012.
[25] 李端玲, 戴建生, 张启先, 等. 一种变胞机构——魔术花球的自由度分析[J]. 机械工程学报, 2002, 38(9):12-16. LI D L, DAI J S, ZHANG Q X, et al. Mobility of a kind of metamorphic mechanism-magic ball[J]. Journal of Mechanical Engineering, 2002, 38(9):12-16(in Chinese).
[26] WEI G W, DING X L, DAI J S. Mobility and geometric analysis of the Hoberman switch-pitch ball and its variant[J]. Journal of Mechanisms and Robotics, 2010, 2(3):031010-1-031010-9.
[27] 黄真, 刘婧芳, 李艳文. 论机构自由度——寻找了150年的自由度通用公式[M]. 北京:科学出版社, 2011:263-288. HUANG Z, LIU J F, LI Y W. Mobility of mechanisms-a general formula of degree of freedom looking for 150 years[M]. Beijing:Science Press, 2011:263-288(in Chinese).
[28] 刘婧芳, 黄晓欧, 余跃庆, 等. 多环耦合机构末端件自由度计算的等效法[J]. 机械工程学报, 2014, 50(23):13-19. LIU J F, HUANG X O, YU Y Q, et al. Equivalent method of output mobility calculation for a novel multi-loop coupled mechanism[J]. Journal of Mechanical Engineering, 2014, 50(23):13-19(in Chinese).
[29] 许允斗, 刘文兰, 陈亮亮, 等. 构架式可展天线机构自由度分析——拆杆等效法[J]. 航空学报, 2017, 38(9):421188. XU Y D, LIU W L, CHEN L L, et al. Mobility analysis of a deployable truss-antenna mechanism-method based on link-demolishing and equivalent idea[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):421188(in Chinese).
[30] 高慧芳, 刘婧芳, 黄晓欧. 基于独立运动分流标记法的多环耦合机构自由度分析方法[J]. 北京工业大学学报, 2015, 41(11):1658-1664. GAO H F, LIU J F, HUANG X O. Method of mobility calculation for a coupled mechanism based on independent motion shunting measurement[J]. Journal of Beijing University of Technology, 2015, 41(11):1658-1664(in Chinese).
[31] LALIERTE T, GOSSELIN C. Construction, mobility analysis and synthesis of polyhedra with articulated faces[J]. Journal of Mechanisms and Robotics, 2013, 6(1):011007-1-011007-11.

Outlines

/