ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Force-constraint method for localization of ceramic core of hollow turbine blade
Received date: 2017-03-01
Revised date: 2017-04-21
Online published: 2017-05-18
Supported by
National Natural Science Foundation of China (51475374,51505387);the Fundamental Research Funds for the Central Universities (3102015ZY087)
The wax pattern is always used as a dimension transfer component in near-net-shape casting process for a hollow turbine blade, and its wall-thickness accuracy entirely depends on the positional relationship between the die cavity of the wax pattern and the internal ceramic core. Generally, the ceramic core is located in the wax pattern die through a series of locating rods. In order to reduce the positional shift of the ceramic core caused by locating errors, a locating layout optimization method based on the force-balance constraint is proposed in this paper. An error transfer model, which formulates the mapping relationship between localization errors and perpetuation of the ceramic core, is established. According to the static equilibrium theory, an optimization model for locating the layout of the ceramic core is then proposed based on gravity constraint. Considering the discrete feature of locating the candidate point on the surface of the ceramic core, a solving strategy for the optimization model is given by utilizing the genetic algorithm. Comparisons of simulation results prove that the locating layout optimized with the method in this paper can improve the localization accuracy of the ceramic core, while guaranteeing the localization stability. Based on a wax injection experiment, the feasibility of the optimization result is also demonstrated.
CUI Kang , WANG Wenhu , JIANG Ruisong , ZHAO Dezhong , JIN Qichao . Force-constraint method for localization of ceramic core of hollow turbine blade[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(9) : 421209 -421209 . DOI: 10.7527/S1000-6893.2017.421209
[1] PETES F, VOIGT R, BLAIR M. Dimensional repeatability of investment castings[C]//9th World Conference on Investment Casting. Montvale, NJ: Investment Casting Institute, 1996: 22.
[2] BEMBLAGE O, KARUNAKAR D B. A Study on the blended wax patterns in investment casting process[C]//Proceedings of the World Congress on engineering. The International Association of Engineers, 2011, 1: 6-8.
[3] SINGH B, KUMAR P, MISHRA B K. Simulation of wax pattern dimensions for accuracy improvement in ceramic shell investment casting[J]. International Journal of Surface Engineering & Materials Technology, 2013, 3(1): 45-50.
[4] SABAU A S, VISWANATHAN S. Prediction of wax pattern dimensions in investment casting[J]. Transactions-American Foundrymens Society, 2002, 1: 733-746.
[5] SABAU A S, VISWANATHAN S. Material properties for predicting wax pattern dimensions in investment casting[J]. Materials Science and Engineering: A, 2003, 362(1): 125-134.
[6] LIU C, JIN S, LAI X, et al. Influence of complex structure on the shrinkage of part in investment casting process[J]. The International Journal of Advanced Manufacturing Technology, 2015, 77(5-8): 1191-1203.
[7] SINGH B, KUMAR P, MISHRA B K. Simulation of wax pattern dimensions for accuracy improvement in ceramic shell investment casting[J]. International Journal of Surface Engineering and Materials Technology, 2013, 3(1): 45-50.
[8] PATTNAIK S, KARUNAKAR D B, JHA P K. Multi-characteristic optimization of wax patterns in the investment casting process using grey-fuzzy logic[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(5-8): 1577-1587.
[9] JIANG R S, WANG W H, ZHANG D H, et al. Wall thickness monitoring method for wax pattern of hollow turbine blade[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(5): 949-960.
[10] 崔康, 汪文虎, 蒋睿嵩, 等. 涡轮叶片精铸模具陶芯定位元件逆向调整算法[J]. 航空学报, 2011, 32(10): 1924-1929. CUI K, WANG W H, JIANG R S, et al. Reverse adjustment algorithm of ceramic core locators in hollow turbine blade investment casting die[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1924-1929 (in Chinese).
[11] 冯炜, 汪文虎, 王孝忠, 等. 空心涡轮叶片精铸蜡型陶芯定位元件尺寸计算方法[J]. 航空学报, 2013, 34(1): 181-186. FENG W, WANG W H, WANG X Z, et al. Size calculation method of ceramic core locators for hollow turbine blade investment casting wax pattern[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 181-186 (in Chinese).
[12] ASNTE J N. A combined contact elasticity and finite element-based model for contact load and pressure distribution calculation in a frictional workpiece-fixture system[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(5-6): 578-588.
[13] WU N H, CHAN K C. A genetic algorithm based approach to optimal fixture configuration[J]. Computers & Industrial Engineering, 1996, 31(3): 919-924.
[14] CHOU Y C, CHANDRU V, BARASH M M. A mathematical approach to automatic configuration of machining fixtures: analysis and synthesis[J]. Journal of Engineering for Industry, 1989, 111(4): 299-306.
[15] LIAO Y G. A genetic algorithm-based fixture locating positions and clamping schemes optimization[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2003, 217(8): 1075-1083.
[16] LI B, MELKOTE S N. Improved workpiece location accuracy through fixture layout optimization[J]. International Journal of Machine Tools and Manufacture, 1999, 39(6): 871-883.
[17] KAYA N. Machining fixture locating and clamping position optimization using genetic algorithms[J]. Computers in Industry, 2006, 57(2): 112-120.
[18] PRABHAHARAN G, PADMANABAN K P, KRISHNAKUMAR R. Machining fixture layout optimization using FEM and evolutionary techniques[J]. The International Journal of Advanced Manufacturing Technology, 2007, 32(11-12): 1090-1103.
[19] PADMANABAN K P, PRABHAHARAN G. Dynamic analysis on optimal placement of fixturing elements using evolutionary techniques[J]. International Journal of Production Research, 2008, 46(15): 4177-4214.
[20] PADMANABAN K P, ARULSHRI K P, PRABHAHARAN G. Machining fixture layout design using ant colony algorithm based continuous optimization method[J]. The International Journal of Advanced Manufacturing Technology, 2009, 45(9-10): 922-934.
[21] REX F M T, RAVINDRAN D. An integrated approach for optimal fixture layout design[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, 231(7): 1217-1228.
[22] WANG M Y, PELINESCU D M. Optimizing fixture layout in a point-set domain[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 312-323.
[23] WANG M Y. An optimum design for 3-D fixture synthesis in a point set domain[J]. IEEE Transactions on Robotics and Automation, 2000, 16(6): 839-846.
[24] XIONG Z, WANG M Y, LI Z. A near-optimal probing strategy for workpiece localization[J]. IEEE Transactions on Robotics, 2004, 20(4): 668-676.
[25] ATKINSON A C, DONEV A N, TOBIAS R D. Optimum experimental designs, with SAS[M]. Oxford: Oxford University Press, 2007: 137-147.
/
〈 | 〉 |