ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Coordinated turn of BTT vehicle based on control moment gyroscopes
Received date: 2017-01-03
Revised date: 2017-04-16
Online published: 2017-05-08
Supported by
National Natural Science Foundation of China (91216106)
A coordinated turn control approach that takes coupling factors between channels into account is proposed for the problem on the sideslip angle introduced by the lateral maneuvering of the Bank-To-Turn (BTT) vehicle. A suppression actuator for the sideslip angle based on the Single Gimbal Control Moment Gyroscope (SGCMG) is put forward to replace traditional actuators, such as rudder, vector thrust engine, etc. A multivariable and strong coupling nonlinear BTT dynamical model is established for the case of lateral maneuvering of the BTT vehicle installed with a control moment gyroscope. According to the requirement of coordinated turning of BTT vehicle in lateral maneuvering, a decoupling control law based on feedback linearization and linear quadratic optimal algorithm is developed. Numerical results show that the coordinated turn control law is valid for tracking of the roll angle and active suppressing of the sideslip angle.
ZHAO Kun , CAO Dengqing , HUANG Wenhu . Coordinated turn of BTT vehicle based on control moment gyroscopes[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(9) : 321096 -321096 . DOI: 10.7527/S1000-6893.2017.321096
[1] 高清, 赵俊波, 李潜. 类HTV-2横侧向稳定性研究[J]. 宇航学报, 2014, 35(6): 657-662. GAO Q, ZHAO J B, LI Q. Study on lateral-directional stability of HTV-2 like configuration[J]. Journal of Astronautics, 2014, 35(6): 657-662 (in Chinese).
[2] MENON P K, SWERIDUK G D, OHLMEYER E J, et al. Integrated guidance and control of moving-mass actuated kinetic warheads[J]. Journal of Guidance Control & Dynamics, 2002, 27(1): 118-126.
[3] WOOD W, KLEB W, HYATT A. Assessment of turbulent CFD against STS-128 hypersonic flight data[C]//AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 2010.
[4] INNOCENTI M, THUKRAL A. Simultaneous reaction jet and aerodynamic control of missile systems[C]//AIAA Guidance, Navigation and Control Conference. Reston, VA: AIAA, 1993: 811-820.
[5] RUI H, SATO K, MANABE S. Autopilot design for a missile with reaction-jet using coefficient diagram method[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA: AIAA, 2001.
[6] 高长生, 李君龙, 荆武兴, 等. 导弹质量矩控制技术发展综述[J]. 宇航学报, 2010, 31(2): 307-314. GAO C H, LI J L, JING W X, et al. Key technique and development for moving mass actuated kinetic missile[J]. Journal of Astronautics, 2010, 31(2): 307-314 (in Chinese).
[7] ROGERS J, COSTELLO M. Control authority of a projectile equipped with a controllable internal translating mass[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1323-1333.
[8] HIGUCHI T, UENO S, OHMURA T. Singularity avoidance steering logic for SGCMG systems using state feedback[C]//AIAA/AAS Astrodynamics Specialist Conference. Reston, VA: AIAA, 2010.
[9] 王振, 吴忠, 蒋方超. 基于复合执行机构的再入弹头动力学建模与控制[J]. 弹道学报, 2012, 24(4): 6-10. WANG Z, WU Z, JIANG F C. Dynamic modeling and control of reentry warhead with hybrid actuators[J]. Journal of Ballistics, 2012, 24(4): 6-10 (in Chinese).
[10] 吴忠, 朱挺, 魏孔明. 基于控制力矩陀螺的再入弹头姿态控制技术研究[C]//中国控制会议, 2010. WU Z, ZHU T, WEI K M. On attitude control technology of reentry warhead using control moment gyroscopes[C]//Proceedings of the 29th Chinese Control Conference, 2010 (in Chinese).
[11] 张靖男, 赵兴锋, 郑志强. BTT导弹的发展现状与趋势[J]. 飞航导弹, 2006(10): 37-39. ZHANG J N, ZHAO X F, ZHENG Z Q. Development status and trend of BTT missile[J]. Aerodynamic Missile Journal, 2006(10): 37-39 (in Chinese).
[12] 安相宇, 王小虎. 高超声速滑翔飞行器动态逆解耦跟踪控制方法研究[J]. 系统仿真学报, 2010, 22(s1): 107-110. AN X Y, WANG X H. Research of dynamic inversion decoupling tracking control method for hypersonic sliding vehicle[J]. Journal of System Simulation, 2010, 22(s1): 107-110 (in Chinese).
[13] 王鹏. 高超声速巡航飞行器姿态控制方法研究[D]. 长沙: 国防科学技术大学, 2013. WANG P. Research on attitude control method for hypersonic cruise vehicle[D]. Changsha: National University of Defence Technology, 2013 (in Chinese).
[14] ISIDORI A. 非线性控制系统[M]. 第3版. 王奔, 张圣贤, 译. 北京: 电子工业出版社, 2012: 173-183. ISIDORI A. Nonlinear control systems[M]. 3rd ed. WANG B, ZHANG S X, translated. Beijing: Electronic Industry Press, 2012: 173-183 (in Chinese).
[15] 黄圳圭. 航天器姿态动力学[M]. 长沙: 国防科技大学出版社, 1997: 197. HUANG Z G. Spacecraft attitude dynamics[M]. Changsha: National University of Defence Technology Press, 1997: 197 (in Chinese).
[16] 陈少楠. 船舶陀螺减摇装置设计及控制研究[D]. 青岛: 中国海洋大学, 2012. CHEN S N. Anti-roll gyro stabilizer design and control for ships[D]. Qingdao: Ocean University of China, 2012 (in Chinese).
[17] 胡耀坤. 制导炸弹倾斜转弯飞行控制系统设计与仿真研究[D]. 南京: 南京理工大学, 2009. HU Y K. Design and simulation of the bank-to-turn flight control system for guided bombs[D]. Nanjing: Nanjing University of Science and Technology, 2009 (in Chinese).
[18] 孙浩, 罗建军, 马卫华. 高超声速滑翔飞行器不确定性分析与H∞混合灵敏度控制[J]. 系统工程与电子技术, 2014, 36(12): 2466-2472. SUN H, LUO J J, MA W H. Uncertainty analysis and H∞ mixed sensitivity control for hypersonic gliding vehicle[J]. Systems Engineering and Electronics, 2014, 36(12): 2466-2472 (in Chinese).
[19] 张友安, 杨旭. BTT导弹的神经网络自适应反馈线性化控制[J]. 航空学报, 2000, 21(1): 84-86. ZHANG Y A, YANG X. Neural networks based adaptive feedback linearization for bank-to-turn missile control[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(1): 84-86 (in Chinese).
[20] DA COSTA R R, CHU Q P, MULDER J A. Reentry flight controller design using nonlinear dynamic inversion[J]. Journal of Spacecraft and Rockets, 2003, 40(1): 64-71.
[21] KAWAGUCHI J, MIYAZAWA Y, NINOMIYA T. Stochastic evaluation and optimization of the hierarchy-structured dynamic inversion flight control[C]//Proceedings of AIAA Guidance, Navigation and Control Conference. Reston, VA: AIAA, 2009: 1-18.
[22] 李惠峰. 高超声速飞行器制导与控制技术[M]. 北京: 中国宇航出版社, 2012. LI H F. Hypersonic vehicle guidance and control technology[M]. Beijing: China Astronatuic Publishing House, 2012 (in Chinese).
/
〈 | 〉 |