Electronics and Electrical Engineering and Control

State estimation of space debris group based on random finite set

  • LU Zhejun ,
  • HU Weidong
Expand
  • ATR Key Lab, College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2017-02-28

  Revised date: 2017-04-28

  Online published: 2017-04-28

Supported by

National Natural Science Foundation of China(61372162)

Abstract

Based on the single target state estimation,the conventional approach is not able to work well when faced with a large number of suddenly generated space debris objects,as those objects are closely-spaced as a group with small size.Thus,based on the Random Finite Set (RFS) theory,the space debris group is treated as the processing object and its states are estimated in this work.In order to address the issues of missed object density distribution and trajectory association,an improved measurement-oriented Cardinalized Probability Hypothesis Density (CPHD) filter is proposed.With a data processing used after filtering,this filter accomplishes the estimation of object density distribution,object number and conspicuous object state in a group.In simulations,the proposed filter significantly outperforms the conventional filter and CPHD filter.It can work in challenging environment,and meanwhile,the conventional filter and CPHD filter fail.

Cite this article

LU Zhejun , HU Weidong . State estimation of space debris group based on random finite set[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(11) : 321200 -321200 . DOI: 10.7527/S1000-6893.2017.321200

References

[1] 刘静, 王荣兰, 张宏博, 等. 空间碎片碰撞预警研究[J]. 空间科学学报, 2004, 24(6):462-469. LIU J, WANG R L, ZHANG H B, et al. Space debris collision prediction research[J]. Chinese Journal of Space Science, 2004, 24(6):462-469(in Chinese).
[2] 李春来, 欧阳自远, 都亨. 空间碎片与空间环境[J]. 第四纪研究, 2002, 22(6):540-551. LI C L, OUYANG Z Y, DU H. Space debris and space environment[J]. Quaternary Sciences, 2002, 22(6):540-551(in Chinese).
[3] JOHNSON N L, STANSBERY E, LIOU J C, et al. The characteristics and consequences of the break-up of the Fengyun-1C spacecraft[J]. Acta Astronautica, 2008, 63(1-4):128-135.
[4] PARDINI C, ANSELMO L. Physical properties and long-term evolution of the debris clouds produced by two catastrophic collisions in Earth orbit[J]. Advances in Space Research, 2011, 48(3):557-569.
[5] BLACKMAN S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Aerospace & Electronic Systems Magazine, 2004, 19(1):5-18.
[6] FORTMANN T E, BAR-SHALOM Y, SCHEFFE M. Sonar tracking of multiple targets using joint probabilistic data association[J]. IEEE Journal of Oceanic Engineering, 1983,8(3):173-184.
[7] HUANG J, HU W D. MCMC-particle-based group tracking of space objects within Bayesian framework[J]. Advances in Space Research, 2014, 53(2):280-294.
[8] MAHLER R P S. Statistical multisource-multitarget information fusion[M]. Norwood, MA:Artech House, 2007:305-538.
[9] WEI B, NENER B, LIU W. Tracking of space debris via CPHD and consensus[C]//International Conference on Control, Automation and Information Sciences, 2015:436-441.
[10] JONES B A, VO B N. A labeled multi-Bernoulli filter for space object tracking[C]//AAS/AIAA Space Flight Mechanics Meeting, 2014.
[11] MAHLER R P S. Advances in statistical multisource-multitarget information fusion[M]. Norwood, MA:Artech House, 2014:181-215,379-403
[12] MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace & Electronic Systems, 2003, 39(4):1152-1178.
[13] MAHLER R. PHD filters of higher order in target number[J]. IEEE Transactions on Aerospace & Electronic Systems, 2007, 43(4):1523-1543.
[14] MAHLER R P S, ZAJIC T. Bulk multitarget tracking using a first-order multitarget moment filter[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2002, 4729:175-186.
[15] ERDINC O, WILLETT P, BAR-SHALOM Y. Probability hypothesis density filter for multitarget multisensor tracking[C]//International Conference on Information Fusion, 2005:1-8.
[16] FRANKEN D, SCHMIDT M, ULMKE M. "Spooky action at a distance" in the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Aerospace & Electronic Systems, 2009, 45(4):1657-1664.
[17] PANTA K, CLARK D E, VO B N. Data association and track management for the gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Aerospace & Electronic Systems, 2009, 45(3):1003-1016.
[18] 欧阳成, 姬红兵, 张俊根. 一种改进的CPHD多目标跟踪算法[J]. 电子与信息学报, 2010, 32(9):2112-2118. OUYANG C, JI H B, ZHANG J G. Improved CPHD filter for multitarget tracking[J]. Journal of Electronics & Information Technology, 2010, 32(9):2112-2118(in Chinese).
[19] 刘林. 航天器轨道理论[M]. 北京:国防工业出版社, 2000:99-326. LIU L. Orbit theory of spacecraft[M]. Beijing:National Defense Industry Press, 2000:99-326(in Chinese).
[20] VALLADO D, CRAWFORD P, HUJSAK R, et al. Revisiting spacetrack report #3[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston, VA:AIAA, 2006:1-88.
[21] VO B T, VO B N, CANTONI A. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7):3553-3567.
[22] VO B N, MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4091-4104.
[23] JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3):401-422.
[24] SCHUHMACHER D, VO B T, VO B N. A Consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8):3447-3457.

Outlines

/