Material Engineering and Machine Manufacturing

Mobility analysis of a deployable truss-antenna mechanism- Method based on link-demolishing and equivalent idea

  • XU Yundou ,
  • LIU Wenlan ,
  • CHEN Liangliang ,
  • YAO Jiantao ,
  • ZHAO Yongsheng ,
  • ZHU Jialong
Expand
  • 1. Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, China;
    2. Key Laboratory of Advanced Forging & Stamping Technology and Science of Ministry of National Education, Yanshan University, Qinhuangdao 066004, China;
    3. China Academy of Space Technology(Xi'an), Xi'an 710100, China

Received date: 2017-02-24

  Revised date: 2017-03-21

  Online published: 2017-04-19

Supported by

National Natural Science Foundation of China (51675458);Key Project of Natural Science Foundation of Hebei Province (E2017203335);Youth Top Talent Project of Hebei Province Higher Education (BJ2017060)

Abstract

A method for Degree Of Freedom (DOF) analysis of spatial mechanisms with multiple coupled-loops is proposed based on the link-demolishing and equivalent idea, in view of the multi-loop coupling characteristic of a deployable truss antenna assembled by tetrahedral elements. The coupling constraint chain of the deployable tetrahedral element is removed, and the remainder is regarded as a parallel mechanism. The number and characteristic of the DOF of each output node are then analyzed using the screw theory, and the equivalent serial kinematic chain between the output nodes and the fixed node are then established. The equivalent mechanism of the deployable tetrahedral element is obtained by reconstructing the coupling constrained chain. The number and characteristic of the DOF of the equivalent mechanism are got using the modified G-K formula and the reciprocal screw theory, respectively. As a result, the kinematic characteristics of the tetrahedral element are known. The structure of the minimum composite unit and the large-scale truss deployable antenna are simplified, according to the equivalent mechanism and the combination of the tetrahedral elements. The numbers of the DOF of the minimum composite unit and the large-scale truss deployable antenna are derived on the basis of the geometric constraint equations. The simulation model for a deployable truss antenna assembled by 27 tetrahedral elements is built, and its DOF is verified. The result shows that the DOF of the antenna analyzed by the proposed method is correct. The method lays a foundation for further analysis of the kinematics and dynamics of similar type of antennas, providing a new idea for DOF analysis of other multi-loop coupling mechanisms.

Cite this article

XU Yundou , LIU Wenlan , CHEN Liangliang , YAO Jiantao , ZHAO Yongsheng , ZHU Jialong . Mobility analysis of a deployable truss-antenna mechanism- Method based on link-demolishing and equivalent idea[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(9) : 421188 -421188 . DOI: 10.7527/S1000-6893.2017.421188

References

[1] DAS A, OBAL M W. Revolutionary satellite structural systems technology: a vision for the future[C]//1998 IEEE Aerospace Applications Conference Proceedings. Piscataway, NJ: IEEE Press, 1998: 57-67.
[2] SHIMIZU M. Surface adjustment of modular mesh antenna[C]//Antennas and Propagation Society International Symposium. Piscataway, NJ: IEEE Press, 1994: 2066-2069.
[3] 张润宁, 姜秀鹏. 环境一号C卫星系统总体设计及其在轨验证[J]. 雷达学报, 2014, 3(3): 249-255. ZHANG R N, JIANG X P. System design and in-orbit verification of the HJ-1-C SAR satellite[J]. Journal of Radars, 2014, 3(3): 249-255 (in Chinese).
[4] JIN M, KAZUHIDE A, YUMI S, et al. Deployment analysis of large space antenna using flexible multibody dynamics[J]. Acta Astronautical, 2000, 47(1): 19-26.
[5] 关富玲, 侯国勇, 赵孟良. 构架式可展开天线结构设计的程序实现[J]. 工程设计学报, 2006, 13(2): 108-113. GUAN F L, HOU G Y, ZHAO M L. Program implementation of structure design for deployable truss antenna[J]. Chinese Journal of Engineering Design, 2006, 13(2): 108-113 (in Chinese).
[6] 陈务军, 付功义, 董石麟, 等. 扭簧驱动构架式空间展开天线结构分析[J]. 宇航学报, 2001, 22(1):9-13. CHEN W J, FU G Y, DONG S L, et al. Structural analysis for deployable space truss antenna with rotational springs activated[J]. Journal of Astronautics, 2001, 22(1): 9-13 (in Chinese).
[7] 张京街, 关富玲, 胡其彪, 等. 带弹簧节点的大型构架式展开天线结构的设计和研究[J]. 空间结构, 2000, 6(2):30-37. ZHANG J J, GUAN F L, HU Q B, et al. Design and study of large deployable truss antenna with spring joints[J]. Spatial Structures, 2000, 6(2): 30-37 (in Chinese).
[8] 张京街, 关富玲, 胡其彪. 大型切割旋转抛物面展开结构的设计[J]. 工程设计学报, 2000, 7(1):46-48. ZHANG J J, GUAN F L, HU Q B. Design of large cutting-palabolic deployable structure[J]. Chinese Journal of Engineering Design, 2000, 7(1): 46-48 (in Chinese).
[9] XU Y, GUAN F L. Structure-electronic synthesis design of deployable truss antenna[J]. Aerospace Science and Technology, 2013, 26(1): 259-267.
[10] 杨玉龙, 关富玲, 侯国勇, 等. 基于结构解析模型法可展桁架天线结构初步设计[J]. 中国机械工程, 2009, 20(16): 1969-1973. YANG Y L, GUAN F L, HOU G Y, et al. Deployable tetrahedral truss antenna initial structural design based on interpretative structural model analysis[J]. China Mechanical Engineering, 2009, 20(16): 1969-1973 (in Chinese).
[11] 岳建如, 关富玲, 陈向阳. 大型可展构架式星载抛物面天线结构设计[J]. 浙江大学学报(工学版), 2001, 35(3): 238-243. YUE J R, GUAN F L, CHEN X Y. A large deployable hexapod paraboloid antenna[J]. Journal of Zhejiang University (Engineering Science), 2001, 35(3): 238-243 (in Chinese).
[12] 黄志荣, 郑士昆, 朱佳龙, 等. 环境一号C星构架反射器展开驱动部件优化设计[J]. 雷达学报, 2014, 3(3): 282-287. HUANG Z R, ZHENG S K, ZHU J L, et al. Design optimization of expansion driven components for the HJ-1-C satellite[J]. Journal of Radars, 2014, 3(3): 282-287 (in Chinese).
[13] 黄志荣, 宋燕平, 郑士昆, 等. 偏馈式构架反射器构型设计与展开协调性分析[J]. 机械科学与技术, 2016, 35(11): 1791-1796. HUANG Z R, SONG Y P, ZHENG S K, et al. Analysis of configuration design and deployable coordination of offset-fed truss reflector[J]. Mechanical Science and Technology for Aerospace, 2016, 35(11): 1791-1796 (in Chinese).
[14] 张海波, 李德洪, 高文军, 等. 星载四面体桁架式可展抛物面天线上弦节点定位研究[J]. 空间结构, 2014, 20(3): 61-68. ZHANG H B, LI D H, GAO W J, et al. Study on upper point location of spaceborne tetrahedron deployable parabolic truss antenna[J]. Spatial Structures, 2014, 20(3):61-68 (in Chinese).
[15] DYER J E, DUDECK M P. Deployable truss structure advanced technology[C]//Proceedings of First NASA/DoD CSI Technology Conference. Washington, D.C.: NASA, 1986: 111-124.
[16] ZIMIN V N, KOLOSKOV I M, MESHKOVSKY V E. Investigation of natural oscillations for self-deployable truss space antennae[J]. Transactions on Modelling and Simulation, 2001, 30: 497-504.
[17] FANG H, SHOOK L, LIN J K H, et al. A large and high radio frequency deployable reflector: AIAA-2012-1838[R]. Reston, VA: AIAA, 2012.
[18] 李波, 杨毅. 星载平面可展天线支撑桁架的结构效率优化[J]. 航空学报, 2015, 36(12): 3853-3860. LI B, YANG Y. Optimization for structure efficiency of a deployable spaceborne truss with flat panel antennas[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3853-3860 (in Chinese).
[19] 黄真, 刘婧芳, 李艳文. 150年机构自由度的通用公式问题[J]. 燕山大学学报, 2011, 35(1): 1-14. HUANG Z, LIU J F, LI Y W. 150-year unified mobility formula issue[J]. Journal of Yanshan University, 2011, 35(1): 1-14 (in Chinese).
[20] BAGCI C. Degrees of freedom of motion in mechanisms[J]. Journal of Engineering for Industry, 1971, 93(1): 140-148.
[21] LI Y W, WANG L M, LIU J F, et al. Applicability and generality of the modified Grubler-Kutzbach criterion[J]. Chinese Journal of Mechanical Engineering, 2013, 26(2): 257-263.
[22] DAI J S, HUANG Z, LIPKIN H. Mobility of overconstrained parallel mechanisms[J]. Journal of Mechanical Design, 2006, 128(1): 220-229.
[23] 杨廷力, 沈惠平, 刘安心, 等. 机构自由度公式的基本形式、自由度分析及其物理内涵[J]. 机械工程学报, 2015, 51(13): 69-80. YANG T L, SHEN H P, LIU A X, et al. Review of the formulas for degrees of freedom in the past ten years[J]. Journal of Mechanical Engineering, 2015, 51(13): 69-80 (in Chinese).
[24] ZHANG Y T, LU W J, MU D J, et al. A novel mobility formula for parallel mechanisms expressed with mobility of general link-group[J]. Chinese Journal of Mechanical Engineering, 2013, 26(6): 1082-1090.
[25] 刘婧芳, 黄晓鸥, 余跃庆, 等. 多环耦合机构末端件自由度计算的等效法[J]. 机械工程学报, 2014, 50(23): 89-96. LIU J F, HUANG X O, YU Y Q, et al. Equivalent method of output mobility calculation for a novel multi-loop coupled mechanism[J]. Journal of Mechanical Engineering, 2014, 50(23): 89-96 (in Chinese).
[26] 高慧芳, 刘婧芳, 黄晓欧. 基于独立运动分流标记法的多环耦合机构自由度分析方法[J]. 北京工业大学学报, 2015, 41(11): 1658-1664. GAO H F, LIU J F, HUANG X O. Method of mobility calculation for a coupled mechanism based on independent motion shunting measurement[J]. Journal of Beijing University of Technology, 2015, 41(11): 1658-1664 (in Chinese).
[27] 沈惠平, 邵国为, 朱小蓉, 等. 基于POC法的多环耦合并联机构拓扑特征分析[J]. 农业机械学报, 2016, 47(4): 349-354. SHEN H P, SHAO G W, ZHU X R, et al. POC method based topology characteristic analysis of multi-loop coupled mechanisms[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 349-354 (in Chinese).

Outlines

/