ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Design principles and numerical simulation analysis of self-circulating aspirated rotor
Received date: 2017-01-04
Revised date: 2017-03-19
Online published: 2017-04-19
Supported by
National Youth Top-notch Talent Support Program;Aeronautical Science Foundation of China (2013ZB24005)
In the present study, a new self-circulating aspirated rotor is designed, and the self-circulating aspirated configuration and principles are analyzed. This new self-circulating aspirated configuration can restrain suction-surface separation and tip secondary flow by increasing boundary layer momentum using centrifugal effect, resulting in better rotor efficiency and stability margin. A comparison with the traditional methods for casing treatment shows the technical advantages of this rotor self-circulating aspirated configuration and tip jet design. According to the basic aspiration and injection theories, a concept design for the Rotor37 case, which contains suction slot, tip injection holes and hollow cavum, is carried out. This work breaks through the mesh generation technology with complex geometry, and conduct an analysis of the flow in the hollow cavum and the main passage of the self-circulating aspirated rotor. The results show significant advantages of this new self-circulating aspirated configuration, and feasibility of the configuration in numerical simulation.
CAO Zhipeng , ZHAO Longbo , WANG Jingyu , GUAN Chaobin . Design principles and numerical simulation analysis of self-circulating aspirated rotor[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(9) : 521098 -521098 . DOI: 10.7527/S1000-6893.2017.621098
[1] KERREBROCK J L, REIJNEN D P, ZIMINSKY W S, et al. Aspirated compressor:1997-GT-525[R]. New York:ASME, 1997.
[2] MERCHANT A A. Design and analysis of a axial aspirated compressor stages[D]. Cambridge, MA:Massachusetts Institute of Technology, 1999.
[3] KERREBROCK J L, DRELA M, MERCHANT A A, et al. A family of design for aspirated compressor:1998-GT-196[R]. New York:ASME, 1998.
[4] MERCHANT A A. Aerodynamic design and performance of aspirated airfoils:GT2002-30369[R]. New York:ASME, 2002.
[5] MERCHANT A A, KERREBROCK J L, ADAMCZYK J J, et al. Experimental investigation of a high pressure ratio aspirated fan stage:GT2004-53679[R]. New York:ASME, 2004.
[6] KERREBROCK J L. Design and test of an aspirated counter-rotating fan:GT2006-90582[R]. New York:ASME, 2006.
[7] 葛正威, 葛治美, 朱俊强, 等. 吸附式跨声速压气机叶栅流场数值模拟[J]. 航空动力学报, 2007, 22(8):1365-1370. GE Z W, GE Z M, ZHU J Q, et al. Numerical investigation of boundary layer suction in an axial transonic compressor cascade[J]. Journal of Aerospace Power, 2007, 22(8):1365-1370(in Chinese).
[8] 刘波, 项效镕, 南向谊, 等. 附面层抽吸对叶栅表面分离流动控制的实验研究[J]. 推进技术, 2009, 30(6):703-708. LIU B, XIANG X R, NAN X Y, et al. Experimental investigation for suppression boundary layer separation on cascade surface by BLS[J]. Journal of Propulsion Technology, 2009, 30(6):703-708(in Chinese).
[9] 刘波, 李志鹏, 赵鹏程, 等. 高负荷吸附式压气机叶栅数值与实验研究[J]. 航空动力学报, 2014, 29(1):133-139. LIU B, LI Z P, ZHAO P C, et al. Numerical and experimental investigation on highly loaded aspirated compressor cascade[J]. Journal of Aerospace Power, 2014, 29(1):133-139(in Chinese).
[10] 王掩刚, 赵龙波, 任思源, 等. 抽吸角度对高负荷、跨音速叶表附面层抽吸效应研究[J]. 西北工业大学学报, 2010, 28(5):643-648. WANG Y G, ZHAO L B, REN S Y, et al. Exploring a better scheme of boundary layer suction (BLS) holes to improve the performance of a high load transonic compressor cascade[J]. Journal of Northwestern Polytecnical University, 2010, 28(5):643-648(in Chinese).
[11] DAY I J. Active suppression of rotating stall and surge in axial compressor:1991-GT-87[J]. New York:ASME, 1991.
[12] WEIGL H J, PADUANO J D, FRÉCHETTE L G, et al. Active stabilization of rotating stall and surge in a transonic single stage axial compressor[J]. Journal of Turbomachinery, 1998, 120:625-636.
[13] SUDER K L, HATHAWAY M D, THORP S A, et al. Compressor stability enhancement using discrete tip injection[J]. Journal of Turbomachinery, 2001, 123(1):14-23.
[14] HATHAWAY M D. Self-recirculating casing treatment concept for enhanced compressor performance:GT2002-30368[R]. New York:ASME, 2002.
[15] STRAZISAR A J, BRIGHT M M, THORP S, et al. Compressor stall control through endwall recirculation:GT2004-54295[R]. New York:ASME, 2004.
[16] WEICHERT S, DAY I, FREEMAN C. Self-regulating casing treatment for axial compressor stability enhancement:GT2011-46042[R]. New York:ASME, 2011.
[17] 童志庭, 聂超群, 朱俊强. 微喷气提高轴流压气机稳定性的研究[J]. 工程热物理学报, 2006, 27(S1):121-124. TONG Z T, NIE C Q, ZHU J Q. Investigation on miro tip injection improving the stability of an axial compressor[J]. Journal of Engineering Thermophysics, 2006, 27(S1):121-124(in Chinese).
[18] 李继超, 林峰, 童志庭, 等. 轴流压气机叶顶喷气控制实验研究[J]. 航空学报, 2013, 34(11):2464-2471. LI J C, LIN F, TONG Z T, et al. Experimental investigation of control with tip air injection in axial flow compressor[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11):2464-2471(in Chinese).
[19] 吴艳辉, 稂仿玉, 吴俊峰, 等. 叶尖喷气影响压气机近失速流场特征的数值研究[J]. 推进技术, 2014, 35(2):195-201. WU Y H, LANG F Y, WU J F, et al. Numerical investigation of impact of tip injection on dynamic flow characteristic in an axial flow compressor rotor[J]. Journal of Propulsion Technology, 2014, 35(2):195-201(in Chinese).
[20] 张皓光, 楚武利, 吴艳辉, 等. 压气机端壁自适应流通延迟失速的数值分析[J]. 推进技术, 2009, 30(2):202-208. ZHANG H G, CHU W L, WU Y H, et al. Numerical investigation of the flow mechanisms of compressor stall delay through end wall self recirculation[J]. Journal of Propulsion Technology, 2009, 30(2):202-208(in Chinese).
[21] WANG W, CHU W L, ZHANG H G, et al. The effects on stability performance and tip leakage flow of recirculating casing treatment in a subsonic axial flow compressor:GT2016-56756[R]. New York:ASME, 2016.
[22] BOLLN G W, BURNES R, FIELD K J. F414 engine today:Growth potential for 21st century fighter mission challenges:ISABE 99-7113[R]. Fairfield, DE:General Electric Company,1999.
[23] RWADIA A, MIEIKE M J. Self bleeding rotor blade:5480284[P]. 1996-01-02.
[24] MOORE R D, REID L. Performance of single stage axial flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26, respectively, and with design pressure ratio of 2.05:NASA TP-134626[R]. Washington, D.C.:NASA,1980.
/
〈 | 〉 |