ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Influence of tip clearance on high-bypass-ratio fan/booster
Received date: 2016-11-18
Revised date: 2017-03-06
Online published: 2017-04-17
An analytical study of tip clearance flows in the high-bypass-ratio fan/booster is presented. The results reveal that for all kinds of corrected rotating speed, the flow and the total pressure ratio predicted by CFD is very close to the experiment result; for the high corrected rotating speed, the efficiency is lower in CFD and stall margin is almost equal to the experiment results; for the decreased corrected rotating speed, the efficiency of the experiment is obviously higher, and stall margin of the experiment is lower. Evaluations are conducted under 1.0, 0.85 and 0.6 corrected rotating speed conditions for multiple fan tip clearance levels to obtain clearance sensitivities. When the tip clearance increases, the shock wave-boundary interaction and tip leakage flow mixing lead to secondary flow loss at high corrected rotating speed, and the performance decreases at the design point. Stall margin will rapidly fall when the tip clearance rises to a certain level. Similar results are obtained at low corrected rotating speed while the decline of efficiency is slower and stall margin rises as tip clearance increases, revealing the reduction of tip sensitivity as the corrected rotating speed reduces. There is little influence of tip clearance on the core flow at all kinds of corrected rotating speed.
CHEN Yunyong , WAN Ke , YANG Xiaohe , DING Jianguo . Influence of tip clearance on high-bypass-ratio fan/booster[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(9) : 520951 -520951 . DOI: 10.7527/S1000-6893.2017.620951
[1] CUMPSTY N A. Compressor aerodynamics[M]. Essex:Longman Scientific & Technical, 1989.
[2] 陈懋章. 叶轮机气动研究现状与发展趋势[C]//航空百年动力分论坛大会报告, 2003. CHEN M Z. Present status and future development of the studies for turbomachinery aerodynamics[C]//Forum of 100th Anniversary for Aeronautics-Jet Propulsion, 2003(in Chinese).
[3] 朱芳, 陈云永, 卫飞飞, 等. 某民用大涵道比涡扇发动机风扇缩尺试验件气动性能数值仿真[J]. 航空动力学报, 2013, 28(7):1539-1548. ZHU F, CHEN Y Y, WEI F F, et al. Numerical simulation of aerodynamic performance of scaled fan of a civil high-bypass-ration turbo engine[J]. Journal of Aerospace Power, 2013, 28(7):1539-1548(in Chinese).
[4] 万科, 朱芳, 金东海, 等. 周向平均方法在某风扇/增压级分析中的应用[J]. 航空学报, 2014, 35(1):132-140. WAN K, ZHU F, JIN D H, et al. Application of circumferentially averaged method in fan/booster[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):132-140(in Chinese).
[5] 邹正平, 李宇, 刘火星, 等. 民用大涵道比涡扇发动机叶轮机某型关键技术[J]. 航空动力学报, 2008, 23(8):1504-1518. ZOU Z P, LI Y, LIU H X, et al. Key turbomachinery technology of civil high-bypass-ratio turbofan engine[J]. Journal of Aerospace Power, 2008, 23(8):1504-1518(in Chinese).
[6] SMITH L H. Casing boundary layers in multi-stage compressors[C]//Proceedings of the Symposium on Flow Research on Blading, 1970.
[7] MOORE R D. Rotor tip clearance effects on overall and blade-element performance of axial-flow transonic fan stage:NASA TP 2049[R]. Cleveland:NASA Lewis Research Center, 1982.
[8] WISLER D C. Loss reduction in axial flow compressors through low-speed model testing[J]. Journal of Turbomachinery, 1985, 107(2):354-363.
[9] DENTON J D. Loss mechanism in turbomachines[J]. Journal of Turbomachinery, 1993, 115(4):621-656.
[10] SMITH G D J, CUMPSTY N A. Flow phenomena in compressor casing treatment[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(3):532-541.
[11] ADAMCZYK J J, CELESTINA M L, GREITZER E M. The role of tip clearance in high-speed fan stall:ASME 91-GT-83[R]. New York:ASME, 1991.
[12] WADIA A R, HAH C, RABE D. The impact of forward sweep on tip clearance flows in transonic compressor[C]//24th International Congress of the Aeronautical Sciences, 2004.
[13] 邓宝洋, 桂幸民, 袁巍, 等.高负荷跨音压气机转子的间隙效应[J]. 北京航空航天大学学报, 2002, 28(4):387-390. DENG B Y, GUI X M, YUAN W, et al. Experimental investigation on high-loading transonic compressor rotor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(4):387-390(in Chinese).
[14] 桂幸民, 聂超群, 王同庆, 等. 跨音压气机转子叶尖间隙复杂流动观测[J]. 工程热物理学报, 2000, 21(5):570-572. GUI X M, NIE C C, WANG T Q, et al. Tip clearance flow in a transonic compressor rotor[J]. Journal of Engineering Thermophysics, 2000, 21(5):570-572(in Chinese).
[15] SAHA N, MA R, DEVENPORT W J. Characterizing unsteady periodic disturbances in the tip leakage vortex of an idealized axial compressor rotor blade:AIAA-2011-0386[R]. Reston, VA:AIAA, 2011.
[16] CHOI M, BAEK J H. Role of the hub-corner-separation on the rotating stall:AIAA-2006-4462[R]. Reston, VA:AIAA, 2006.
[17] 刘波, 南向谊, 陈云永. 附面层抽吸对转子激波结构和分离流动的影响[J]. 航空学报, 2008, 29(2):315-320. LIU B, NAN X Y, CHEN Y Y. Effects of BLS on the shockwave structure and separation flow of fan rotor[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2):315-320(in Chinese).
[18] ZANTE D V, STRAZISAR A J, WOOD J R, et al. Recommendations for achieving accurate numerical simulation of tip clearance flows in transonic compressor rotors[J]. Journal of Turbomachinery, 2000, 122(4):733-742.
[19] FROST G R, WENNERSTROM A J. The design of axial com-pressor airfoils using arbitrary camber lines:ARL-73-0107(AD 765165)[R]. Dayton, OH:Aerospace Research Laboratories, Wright-Patterson Air Force Base, 1973.
[20] 冀国锋, 桂幸民. 轴流/离心压气机通用任意中弧造型设计方法研究[J]. 航空动力学报, 2009, 24(1):150-156. JI G F, GUI X M. A blading design method for axial/centrifugal compressor airfoils using arbitrary camber lines[J]. Journal of Aerospace Power, 2009, 24(1):150-156(in Chinese).
/
〈 | 〉 |