Material Engineering and Machine Manufacturing

Anallowance optimization method for near-net shape blade under profile tolerance constraints

  • HOU Feiru ,
  • WAN Neng ,
  • CHANG Zhiyong ,
  • CHEN Zezhong
Expand
  • The KeyLaboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2016-12-21

  Revised date: 2017-01-22

  Online published: 2017-04-10

Supported by

Natural Science Basic Research Plan in Shaanxi Province of China (2016JM5040)

Abstract

To solve the problem of non-uniform machining allowance of the near-net shape blade in adaptive finish machining, an allowance optimization method is put forward considering the profile tolerance constraints of the blade cross curve. When the design datum is matched with the machining datum, the allowance optimization theory that the workpiece makes rigid displacement is modified to establish a new optimization model for the blade. The method proposed prevents the inspection section curve of the blade after optimization from going beyond the profile tolerance, and improves the ability of identifying the surface to be machined in the allowance optimization stage. A compressor blade is taken as an example to validate the method. Analysis shows that the method can meet the requirements of blade machining allowance and can also satisfy the profile tolerance of the inspection section curve, providing a new approach of allowance optimization for near-net shape blade in the adaptive machining process.

Cite this article

HOU Feiru , WAN Neng , CHANG Zhiyong , CHEN Zezhong . Anallowance optimization method for near-net shape blade under profile tolerance constraints[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(7) : 421069 -421069 . DOI: 10.7527/S1000-6893.2017.421069

References

[1] 程浩. "自适应加工"技术——零件快速装夹新概念[J]. 航空制造技术, 2006(5): 110-111. CHENG H. "Adaptive machining technology"—A new concept of rapid assembly of parts[J]. Aeronautical Manufacturing Technology, 2006(5): 110-111 (in Chinese).
[2] 蔺小军, 陈悦, 王志伟, 等. 面向自适应加工的精锻叶片前后缘模型重构[J]. 航空学报, 2015, 36(5): 1695-1703. LIN X J, CHEN Y, WANG Z W, et al. The research of model restructuring about leading edge and tailing edge of precision forging blade for the adaptive machining technology[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1695-1703 (in Chinese).
[3] LI X M, YEUNG M, LI Z X. An algebraic algorithm for workpiece localization[C]//Proceedings of IEEE International Conference on Robotics and Automation, 1996: 152-158.
[4] YI X, MA L M, LI Z X. A geometric algorithm for symmetric workpiece localization[C]//7th World Congress on Intelligent Control and Automation, 2008: 6065-6069.
[5] LI Z X, GOU J B, CHU Y X. Geometric algorithms for workpiece localization[J]. IEEE Transactions on Robotics & Automation, 1999, 14(6): 864-878.
[6] CHU Y X, GOU J B, LI Z X. On the hybrid workpiece localization/envelopment problems[J]. IEEE International Conference on Robotics and Automation, 1998, 18(5): 3665-3670.
[7] GOU J B, CHU Y, LU Z X. On the symmetric localization problem[J]. IEEE Transactions on Robotics & Automation, 1998, 14(4): 533-540.
[8] XIONG Z H, LI Z X. On the discrete symmetric localization problem[J]. International Journal of Machine Tools and Manufacture, 2003, 43(9): 863-870.
[9] CHATELAIN J F, FORTIN C. A balancing technique for optimal blank part machining[J]. Precision Engineering, 2001, 25(1): 13-23.
[10] CHATELAIN J F. A level-based optimization algorithm for complex part localization[J]. Precision Engineering, 2005, 29(2): 197-207.
[11] ZHANG Y, ZHANG D H, WU B H. An approach for machining allowance optimization of complex parts with integrated structure[J]. Journal of Computational Design & Engineering, 2015, 2(4): 248-252.
[12] WU B H, WANG J, ZHANG Y, et al. Adaptive location of repaired blade for multi-axis milling[J]. Journal of Computational Design & Engineering, 2015, 33(4): 261-267.
[13] ZHU L M, ZHEN H X, DING H, et al. A distance function based approach for localization and profile error evaluation of complex surface[J]. Journal of Manufacturing Science & Engineering, 2004, 126(3): 542-554.
[14] ZHU L M, ZHANG X M, DING H, et al. Geometry of signed point-to-surface distance function and its application to surface approximation[J]. Journal of Computing & Information Science in Engineering, 2010, 10(4): 819-829.
[15] 张定华, 程云勇, 卜昆, 等. 考虑弯扭变形的叶片模型配准方法[J]. 航空学报, 2009, 30(12): 2449-2455. ZHANG D H, CHENG Y Y, BU K, et al. Realiable alignment method for blade shape analysis considering its blade and twist deformation[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2449-2455 (in Chinese).
[16] 敬石开, 程云勇, 张定华, 等. 一种区域公差约束的叶片模型配准方法[J]. 计算机集成制造系统, 2010, 16(4): 883-886. JING S K, CHENG Y Y, ZHANG D H, et al. Tolerance zone constrained alignment method for turbine blade model[J]. Computer Integrated Manufacturing System, 2010, 16(4): 883-886 (in Chinese).
[17] 吕北生, 程云勇. 轮廓度公差约束的叶片模型配准方法[J]. 计算机集成制造系统, 2016, 22(8): 1831-1836. LV B S, CHENG Y Y. Profile tolerance constrained registration method for blade model[J]. Computer Integrated Manufacturing System, 2016, 22(8): 1831-1836 (in Chinese).
[18] PATRIKALAKIS N M. Shape interrogation for computer aided design and manufacturing[M]. Berlin: Springer, 2002: 308-310.
[19] PIEGL L, TILLER W. The NURBS book[M]. 2nd ed. New York: Springer-Verlag, 1997: 163-167.
[20] 施法中. 计算机辅助几何设计与非均匀有理B样条[M]. 北京: 高等教育出版社, 2001: 441-444. SHI F Z. Computer aided geometric design and non-uniform rational b-spline[M]. Beijing: Higher Education Press, 2001: 441-444 (in Chinese).
[21] 王国瑾, 汪国昭, 郑建民. 计算机辅助几何设计[M]. 北京: 高等教育出版社, 2001: 114-118. WANG G J, WANG G Z, ZHENG J M. Computer aided geometric design[M]. Beijing: Higher Education Press, 2001: 114-118 (in Chinese).

Outlines

/