ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Effects of nose and afterbody of blunt body on side force
Received date: 2017-01-10
Revised date: 2017-03-28
Online published: 2017-04-01
Supported by
National Natural Science Foundation of China (11472028);China Aerospace Science and Technology Corporation Innovation Fund (CASC01);Equipment Pre-research Fund 2015
The random asymmetric flow over its blunt-nose body is generated when it flies at high angles of attack, thus resulting in unexpected side-forces, which leads to the trajectory deviation. The pattern of asymmetric flow and its corresponding side-force are determined by attaching an artificial perturbation on the nose of the blunt-nose body at high angle of attack, which is helpful to improve the flight characteristics and maneuverability of blunt-nose body. Based on the major control effect of the artificial perturbation on the asymmetric flow, the effect of the afterbody of the model is discussed in this paper. Experimental tests are conducted to investigate influence factor of side force at high angle of attack 50° and ReD=1.54×105, with the perturbation locations of circumferential angles 90°/270° and meridian angle 10°. It is found that the effect of afterbody is still existent as an important effect factor, which effects the major control of the nose of the model to the asymmetric flow. Though the status of the main control from perturbation cannot be changed by the afterbody, the accuracy of control of perturbation on the nose is decreased. Therefore, the processing quality of afterbody should be enhanced to intensify the major effect of artificial perturbation on the asymmetric flow over the blunt-nose body.
QI Zhongyang , WANG Yankui , WANG Lei , SHA Yongxiang . Effects of nose and afterbody of blunt body on side force[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(9) : 121117 -121117 . DOI: 10.7527/S1000-6893.2017.121117
[1] 王刚, 梁新刚, 邓学蓥. 细长体大迎角绕流的滚转角特性[J]. 流体力学实验与测量, 2004, 18(4): 11-14. WANG G, LIANG X G, DENG X Y. Effects of roll angle on side force distribution over slender bodies of revolution at high angle of attack[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(4): 11-14 (in Chinese).
[2] KEENER E R, CHAPMAN G T, KRUSE R L. Effects of Mach number and afterbody length on onset of asymmetric forces on bodies at zero sideslip and high angles of attack: AIAA-1976-0066[R]. Reston, VA: AIAA, 1976.
[3] DAHLEM V. Semi-empirical prediction method for induced side forces on missiles at high angles of attack: AIAA-1979-0025[R]. Reston, VA: AIAA, 1979.
[4] LAMONT P J, HUNT B L. Pressure and force distributions on a sharp-nosed circular cylinder at large angles of inclinations to a uniform subsonic stream[J]. Journal of Fluid Mechanics, 1976, 76(3): 519-559.
[5] ROSHKO A. Experimental on the flow past a circular cylinder at very high Reynolds number[J]. Journal of Fluid Mechanics, 1961, 10(3): 345-356.
[6] LAMONT P J. Pressures around an inclined ogive cylinder with laminar, transitional, or turbulent separation[J]. AIAA Journal, 1982, 20(11): 1492-1499.
[7] LAMONT P J. The effect of Reynolds number on normal and side forces on ogive-cylinders at high incidence: AIAA-1985-1799[R]. Reston, VA: AIAA, 1985.
[8] CHAMPIGNY P. Reynolds number effects on the aerodynamic characteristics of an ogive-cylinder at high angles of attack: AIAA-1984-2176[R]. Reston, VA: AIAA, 1984.
[9] 王延奎, 张永升, 邓学蓥, 等. 矢量喷流对细长体大迎角非对称流动影响研究[J]. 力学学报, 2007, 39(3): 289-296. WANG Y K, ZHANG Y S, DENG X Y, et al. Effect of vectoring jet on asymmetrical vortex of slender body[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(3): 289-296 (in Chinese).
[10] DEGANI D, SCHIFF L B. Numerical simulation of the effect of spatial disturbances on vortex asymmetry[J]. AIAA Journal, 1991, 29(3): 344-352.
[11] PATEL M P, TILMANN C P, NG T T. Closed-loop missile yaw control via manipulation of forebody flow asymmetries[J]. Journal of Spacecraft and Rockets, 2004, 41(3): 436-443.
[12] LOPERA J, NG T T, PATEL M P, et al. Forebody geometry effects on the flowfield of a blunt-nose projectile at high alpha[J]. Journal of Aircraft, 2007,44(6): 1906-1922.
[13] SIRANGU V. The design and aerodynamic control of the slender bodies at high angles of attack[D]. Toledo, OH: University of Toledo, 2009.
[14] MARCONI F. Asymmetric separated flows about sharp cones in a supersonic stream[C]//Proceedings of the 11th International Conference on Numerical Methods in Fluid Dynamics. New York: Springer-Verlag, 1988: 395-402.
[15] 程克明, 范召林, 尹贵鲁. 大攻角流动非对称性成因与对策[J]. 南京航空航天大学学报, 2002, 34(1): 17-21 CHENG K M, FAN Z L, YIN G L. On cause and research strategy of flow asymmetry in high-alpha flows[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2002, 34(1): 17-21 (in Chinese).
[16] DENG X Y,WANG G,CHEN X R, et al. A physical model of asymmetric vortices flow structure in regular state over slender body at high angle of attack[J]. Science in China (Technological Sciences), 2003, 46(6): 561-573.
[17] 齐中阳, 王延奎, 沙永祥, 等. 扰动形状对钝头体非对称流动的影响[J]. 北京航空航天大学学报, 2016, 42(12): 2691-2697. QI Z Y, WANG Y K, SHA Y X, et al. Effects of perturbation geometry on behaviors of asymmetric flow over blunt body[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2691-2697 (in Chinese).
/
〈 |
|
〉 |