ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Identification of spatial distribution of modulus field of composite material based on frequency response function
Received date: 2016-12-06
Revised date: 2016-12-27
Online published: 2017-03-15
Supported by
National Natural Science Foundation of China (11402052,11572086);Program for New Century Excellent Talents in University (NCET-11-0086);Natural Science Foundation of Jiangsu Province of China (BK20140616)
Considering the heterogeneity of the macroscopic mechanical properties of fiber braided composites, an identification method for spatial distribution of elastic modulus field of the composite beam structure based on Frequency Response Function (FRF) is proposed. The optimization problem is constructed based on sensitivity analysis. The minimum norm of the difference between the measured and the calculated frequency response of acceleration is taken as the objective function, and the spatial distribution of the elastic modulus of the composite beam is then identified by iterative methods. Numerical simulation of a cantilever beam is conducted to verify the correctness of the identification method, and the modal test is then carried out. The homogeneous elastic modulus obtained from a three-point bending test of the same composite beam is taken as the initial value of the optimization problem. The non-contact measurement approach is adopted to obtain the dynamic displacement response of each measuring point on the beam in the modal test, and the acceleration frequency response function is calculated as input data. Results show that the frequency response functions of each measuring point on the beam calculated by the identified elastic modulus field agree well with the experimental values, and the proposed method is feasible when the measurement dynamic responses are noise contaminated. This method is capable of providing a more accurate elastic modulus field for equivalent modeling of composite materials.
FAN Gang , WU Shaoqing , LI Yanbin , FEI Qingguo , HAN Xiaolin . Identification of spatial distribution of modulus field of composite material based on frequency response function[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(8) : 221024 -221024 . DOI: 10.7527/S1000-6893.2017.221024
[1] 汪星明, 邢誉峰. 三维编织复合材料研究进展[J]. 航空学报, 2010, 31(5):914-927. WANG X M, XING Y F. Developments in research on 3D braided composites[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5):914-927(in Chinese).
[2] 杨乃宾. 新一代大型客机复合材料结构[J]. 航空学报, 2008, 29(3):596-604. YANG N B. Composite structure for new generation large commercial jet[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):596-604(in Chinese).
[3] 章令晖, 陈萍. 复合材料在空间遥感器中的应用进展及关键问题[J]. 航空学报, 2015, 36(5):1385-1400. ZHANG L H, CHEN P. Application progress of composites in space remote sensor and its key problems[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1385-1400(in Chinese).
[4] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322. MA L M, ZHANG J Z, YUE G Q, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2):317-322(in Chinese).
[5] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797. GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2773-2797(in Chinese).
[6] 高思阳, 张晶, 付强, 等. 纤维复合材料刚度设计的力学原理及其应用[J]. 航空学报, 2009, 30(7):1227-1235. GAO S Y, ZHANG J, FU Q, et al. Mechanical principles for stiffness design of fibrous composites and their application[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7):1227-1235(in Chinese).
[7] 邢誉峰, 田金梅. 三维正交机织复合材料单胞特征单元及其应用[J]. 航空学报, 2007, 28(4):881-885. XING Y F, TIAN J M. Unit cell eigen-element of 3-D orthogonal woven composites and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):881-885(in Chinese).
[8] DALMAZ A, DUCRET D, GUERJOUMA R E, et al. Elastic moduli of a 2.5D C/SiC composite:Experimental and theoretical estimates[J]. Composites Science and Technology, 2000, 60(6):913-925.
[9] 刘玉佳, 燕瑛, 苏玲. 双随机分布细观分析模型与复合材料性能预报[J]. 复合材料学报, 2011, 28(2):206-210. LIU Y J, YAN Y, SU L. Double-random distribution model and properties prediction of composites[J]. Acta Materiae Compositae Sinica, 2011, 28(2):206-210(in Chinese).
[10] 孔春元, 孙志刚, 高希光, 等. 2.5维C/SiC复合材料经向拉伸性能[J]. 复合材料学报, 2012, 29(2):192-198. KONG C Y, SUN Z G, GAO X G, et al. Tensile property of 2.5D C/SiC composites in warp direction[J]. Acta Materiae Compositae Sinica, 2012, 29(2):192-198(in Chinese).
[11] RAHMANI B, MORTAZAVI F, VILLEMURE I, et al. A new approach to inverse identification of mechanical properties of composite materials:Regularized model updating[J]. Composite Structures, 2013, 105:116-125.
[12] BOLZON G, TALASSI M. An effective inverse analysis tool for parameter identification of anisotropic material models[J]. International Journal of Mechanical Sciences, 2013, 77:130-144.
[13] GRAS R, LECLERC H, HILD F, et al. Identification of a set of macroscopic elastic parameters in a 3D woven composite:Uncertainty analysis and regularization[J]. International Journal of Solids and Structures, 2015, 55:2-16.
[14] SEPAHVAND K, MARBURG S. Identification of composite uncertain material parameters from experimental modal data[J]. Probabilistic Engineering Mechanics, 2014, 37:148-153.
[15] 姜东, 陆韬, 吴邵庆, 等. 2.5维C/SiC复合材料弹性参数不确定性识别方法研究[J]. 振动工程学报, 2014, 27(3):318-325. JIANG D, LU T, WU S Q, et al. An elastic moduli identification method of 2.5 dimensional C/SiC composite with uncertainty[J]. Journal of Vibration Engineering, 2014, 27(3):318-325(in Chinese).
[16] MEHREZ L, MOENS D, VANDEPITTE D. Stochastic identification of composite material properties from limited experimental databases, Part I:Experimental database construction[J]. Mechanical Systems and Signal Processing, 2012, 27:471-483.
[17] JIANG D, ZHANG P, FEI Q G, et al. Comparative study of model updating methods using frequency response function data[J]. Journal of Vibroengineering, 2014, 16(5):2305-2318.
[18] MOTTERSHEAD J E, LINK M, FRISWELL M I. The sensitivity method in finite element model updating:A tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25(7):2275-2296.
[19] FEI Q G, JIANG D, ZHANG D H, et al. Finite element model updating using base excitation response function[J]. Journal of Vibroengineering, 2013, 15(1):9-22.
[20] 李德葆, 陆秋海. 工程振动试验分析[M]. 北京:清华大学出版社, 2004:269-287. LI D B, LU Q H. Analysis of experiments in engineering vibration[M]. Beijing:Tsinghua University Press, 2004:269-287(in Chinese).
[21] 唐进元, 陈维涛, 陈思雨, 等. 一种新的小波阈值函数及其在振动信号去噪分析中的应用[J]. 振动与冲击, 2009, 28(7):118-121. TANG J Y, CHEN W T, CHEN S Y, et al. Wavelet-based vibration signal denoising with a new adaptive thresholding function[J]. Journal of Vibration and Shock, 2009, 28(7):118-121(in Chinese).
[22] DONG W Y, DING H. Full frequency de-noising method based on wavelet decomposition and noise-type detection[J]. Neurocomputing, 2016, 214:902-909.
/
〈 | 〉 |