Special Column of Internal Flow and Heat Transfer Technology Development in Aero-engine

Time marching based throughflow method: Current status and future development

  • YANG Jinguang ,
  • WANG Chunxue ,
  • WANG Dalei ,
  • SHAO Fuyong ,
  • YANG Chen ,
  • WU Hu
Expand
  • 1. School of Energy and Power, Dalian University of Technology, Dalian 116024, China;
    2. Beijing Power Machinery Research Institute, China Aerospace Science and Industry Corporation, Beijing 100074, China;
    3. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2016-11-28

  Revised date: 2017-01-11

  Online published: 2017-03-09

Supported by

the Fundamental Research Funds for Central Universities (DUT15RC (3)035)

Abstract

Aiming to have an exploration on application potential of the throughflow computation method for turbomachines based on the time marching, the research progress home and abroad is concluded, and several key issues of application of this method are generalized, including geometric description of blade blockage, simulation of blade force, discontinuity problems in blade leading and trailing edges, and shock capture. Different computation models are also compared. It is summarized that the throughflow computation method based on the time marching has many advantages compared to the traditional throughflow method, and thus has the potential to be a competitive tool in advanced gas turbine engine components design and analysis, as well as in total engine steady and transient state simulation. This method is expected to have much more improvements in the aspects mentioned above, although it has achieved great progress. It is believed that this method will be adopted as a new standard tool in turbomachinery design and analysis with further developments and improvements.

Cite this article

YANG Jinguang , WANG Chunxue , WANG Dalei , SHAO Fuyong , YANG Chen , WU Hu . Time marching based throughflow method: Current status and future development[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(9) : 520996 -520996 . DOI: 10.7527/S1000-6893.2017.620996

References

[1] WU Z H. A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial-, and mixed-flow types: NACA TN 2604[R]. Washington, D.C.: NASA, 1952.
[2] 蒋浩兴. 国外发展风扇/压气机设计体系的一些经验和启示[J]. 航空发动机, 2001(2): 45-51. JIANG H X. The experiences and enlightenments of foreign fan/compressor design system development[J]. Aeroengine, 2001(2): 45-51 (in Chinese).
[3] PETROVIC M V, WIEDERMANN A. Fully coupled through-flow method for industrial gas turbine analysis: GT2015-42111[R]. New York: ASME, 2015.
[4] NOVAK R A. Streamline curvature computing procedures for fluid-flow problems[J]. Journal of Engineering for Power, 1967, 89(4): 478-490.
[5] MARSH H. A digital computer program for the through-flow fluid mechanics in an arbitrary turbomachine using a matrix method: RM 3509[R]. London: National Gas Turbine Establishment, 1968.
[6] SPURR A. The prediction of 3D transonic flow in turbomachinery using a combined throughflow and blade-to-blade time marching method[J]. International Journal of Heat and Fluid Flow, 1980, 2(4): 189-199.
[7] DAWES W N. Toward improved throughflow capability: The use of three-dimensional viscous flow solvers in a multistage environment[J]. Journal of Turbomachinery, 1992, 114(1): 8-17.
[8] YAO Z, HIRSCH C. Throughflow model using 3D Euler or Navier-Stokes solver[J]. VDI Berichte, 1995, 1185: 51.
[9] DAMLE S V, DANG T Q, REDDY D R. Throughflow method for turbomachines applicable for all flow regimes[J]. Journal of Turbomachinery, 1997, 119(2): 256-262.
[10] DAMLE S V. Throughflow method for turbomachines using Euler solvers: AIAA-1996-0010[R]. Reston, VA: AIAA, 1996.
[11] BARALON S, ERIKSSON L E, HÅLL U. Validation of a throughflow time-marching finite-volume solver for transonic compressors: 98-GT-47[R]. New York: ASME, 1998.
[12] BARALON S, HÅLL U, ERIKSSON L E. Viscous throughflow modelling of transonic compressors using a time-marching finite volume solver[C]//the 13th International Symposium on Air Breathing Engines. Reston: AIAA, 1997: 502-510.
[13] BARALON S, ERIKSSON L E, HÅLL U. Evaluation of higher-order terms in the throughflow approximation using 3D Navier-Stokes computations of a transonic compressor rotor: 99-GT-74[R]. New York: ASME, 1999.
[14] STURMAYR A, HIRSCH C. Throughflow model for design and analysis integrated in a three-dimensional Navier-Stokes solver[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1999, 213(4): 263-273.
[15] SIMON J F, LÉONARD O. A throughflow analysis tool based on the Navier-Stokes equations[C]//Proceedings of ETC 6th European Conference on Turbomachinery. Florence: European Turbomachinery Society, 2005: 7-11.
[16] SIMON J F, LÉONARD O. Modeling of 3-D losses and deviations in a throughflow analysis tool[J]. Journal of Thermal Science, 2007, 16(3): 208-214.
[17] SIMON J F, THOMAS J P, LÉONARD O. On the role of the deterministic and circumferential stresses in throughflow calculations[J]. Journal of Turbomachinery, 2009, 131(3): 031019.
[18] PERSICO G, REBAY S. A penalty formulation for the throughflow modeling of turbomachinery[J]. Computers & Fluids, 2012, 60(10): 86-98.
[19] TADDEI S R, LAROCCA F. Axisymmetric design of axial turbomachines: An inverse method introducing profile losses[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2008, 222(6): 613-621.
[20] TADDEI S R, LAROCCA F. CFD-based analysis of multistage throughflow surfaces with incidence[J]. Mechanics Research Communications, 2013, 47(47): 6-10.
[21] TADDEI S R, LAROCCA F. An actuator disk model of incidence and deviation for RANS-based throughflow analysis[J]. Journal of Turbomachinery, 2014, 136(2): 021001.
[22] PACCIANI R, RUBECHINI F, MARCONCINI M, et al. A CFD-based throughflow method with an explicit body force model and an adaptive formulation for the S2 streamsurface[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2016,230(1): 16-28.
[23] NIGMATULLIN R Z, IVANOV M J. The mathematical models of flow passage for gas turbine engines and their components: LS 198[R]. Neuillysurseine: AGARD, 1994.
[24] 袁宁, 张振家, 顾中华, 等. 涡喷发动机压气机三种S2流面计算程序的比较[J]. 推进技术, 1998, 19(1): 51-57. YUAN N, ZHANG Z J, GU Z H, et al. A comparison of three kinds of calculation program of S2 stream surface in the compressor of aero-engine[J]. Journal of Propulsion Technology, 1998, 19(1): 51-57 (in Chinese).
[25] 季路成, 孟庆国, 周盛. 叶轮机通流计算的时间推进方法[J]. 航空动力学报, 1999, 14(1): 23-26. JI L C, MENG Q G, ZHOU S. Time-marching method for through-flow computation of turbomachinery[J]. Journal of Aerospace Power, 1999, 14(1): 23-26 (in Chinese).
[26] 施发树, 刘兴洲. 多部件模型在全尺寸小型双函道涡扇发动机气流数值模拟中的应用[J]. 推进技术, 1998, 19(4): 22-26. SHI F S, LIU X Z. Multicomponent models in application to numerical simulation of a small full-sized by-pass turbofan engine[J]. Journal of Propulsion Technology, 1998, 19(4): 22-26 (in Chinese).
[27] 施发树. 一体化弹用小涡扇发动机系统的气动热力数值模拟[D]. 南京: 南京航空航天大学, 1999. SHI F S. Aero-thermodynamic numerical simulation of integrated small turbofan engine system[D]. Nanjing: Nanjing University of Aeronautics and Aerospace, 1999 (in Chinese).
[28] 于龙江, 陈美宁, 朴英. 航空发动机整机准三维流场仿真[J]. 航空动力学报, 2008, 23(6): 1008-1013. YU L J, CHEN M N, PIAO Y. Quasi-3D simulation of aero engine full flow field[J]. Journal of Aerospace Power, 2008, 23(6): 1008-1013 (in Chinese).
[29] 曹志鹏, 刘大响, 桂幸民, 等. 某小型涡喷发动机二维数值仿真[J]. 航空动力学报, 2009, 24(2): 439-444. CAO Z P, LIU D X, GUI X M, et al. Two dimensional numerical simulation of small turbojet engine[J]. Journal of Aerospace Power, 2009, 24(2): 439-444 (in Chinese).
[30] 金东海, 桂幸民. 某涡扇发动机考虑级间引气的二维数值模拟[J]. 航空动力学报, 2011, 26(6): 1346-1351. JIN D H, GUI X M. Two dimensional numerical simulation of a turbofan engine with air bleeding in compressor[J]. Journal of Aerospace Power, 2011, 26(6): 1346-1351 (in Chinese).
[31] 李德英, 宋彦萍, 陈浮, 等. 任意曲线坐标系Euler方程S2流面的计算方法[J]. 西安交通大学学报, 2015, 49(7): 42-48. LI D Y, SONG Y P, CHEN F, et al. Euler S2 stream surface calculation for arbitrary curvilinear coordinate system[J]. Journal of Xi’an Jiaotong University, 2015, 49(7): 42-48 (in Chinese).
[32] WAN K, JIN H, JIN D, et al. Influence of non-axisymmetric terms on circumferentially averaged method in fan/compressor[J]. Journal of Thermal Science, 2013, 22(1): 13-22.
[33] 万科, 朱芳, 金东海, 等. 周向平均方法在某风扇/增压级分析中的应用[J]. 航空学报, 2014, 35(1): 132-140. WAN K, ZHU F, JIN D H, et al. Application of circumferentially averaged method in fan/booster[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 132-140 (in Chinese).
[34] SIMON J F. Contribution to throughflow modelling for axial flow turbomachines[D]. Liege: University of Liege, 2007.
[35] MARBLE F. Three-dimensional flow in turbomachines[J]. High Speed Aerodynamics and Jet Propulsion, 1964, 10: 83-166.
[36] DENTON J D. Throughflow calculations for transonic axial flow turbines[J]. Journal of Engineering for Power, 1978, 100(2): 212-218.
[37] DANG T Q, WANG T. Design of multi-stage turbomachinery blading by the circulation method: actuator duct limit: 92-GT-286[R]. New York: ASME, 1992.
[38] BOSMAN C, MARSH H. An improved method for calculating the flow in turbo-machines, including a consistent loss model[J]. Journal of Mechanical Engineering Science, 1974, 16(1): 25-31.
[39] ADAMCZYK J J. Model equation for simulating flows in multistage turbomachinery[J]. Lecture Series-van Kareman Institute for Fluid Dynamics, 1996, 5: N1-N28.
[40] THOMAS J P, LÉONARD O. Investigating circumferential non-uniformities in throughflow calculations using a harmonic reconstruction: GT2008-50328[R]. New York: ASME, 2008.
[41] THOMAS J P, LÉONARD O. Towards a high order throughflow: Part Ⅰ-Investigating the effectiveness of a harmonic reconstruction for 3D flows: GT2010-22841[R]. New York: ASME, 2010.
[42] THOMAS J P, LÉONARD O. Toward a high order throughflow-Investigation of the nonlinear harmonic method coupled with an immersed boundary method for the modeling of the circumferential stresses[J]. Journal of Turbomachinery, 2012, 134(1): 011017.

Outlines

/