Videogrammetry measurement for high-speed complex flow structures

  • ZHANG Zhengyu ,
  • WANG Xiansheng ,
  • HUANG Xuhui ,
  • ZHOU Run ,
  • MAO Ji
Expand
  • 1. High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Information Engineering College, Southwest University of Science and Technology, Mianyang 621000, China

Received date: 2016-11-24

  Revised date: 2017-01-18

  Online published: 2017-02-28

Supported by

National Natural Science Foundation of China (51475453,11472297)

Abstract

To quantify the structures of high-speed flow over a cavity, small circle points with equal space in the row and column are used as background for background oriented schlieren (BOS), and image processing techniques of mark points in videogrammetry measurement (VM) are also employed to break the limits of cross-correlation in existing BOS. The expressions for computing refraction angle and displacement of nonparallel beams are derived. The fields of optical path difference (OPD) and refraction displacement when the beams from the small circle points to the center of the camera is crossing the flow are accurately calculated based on VM collinear equations. The measuring data on flow over the cavities in FL-21 wind tunnel demonstrates that the OPD differences no more than 1 μm and refraction angle about 1 μrad can be perceived distinctly, and the structures of waves/vortices/shear layer are quantified. The method proposed can provide a new way to measure aero-optic effects and visualize the complex flows. With simple optical system and no expensive coherent sources, the method has great application potential.

Cite this article

ZHANG Zhengyu , WANG Xiansheng , HUANG Xuhui , ZHOU Run , MAO Ji . Videogrammetry measurement for high-speed complex flow structures[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(8) : 120989 -120989 . DOI: 10.7527/S1000-6893.2017.120989

References

[1] MERRICK J D, REEDER M F. Cavity-store interaction under supersonic free stream conditions:AIAA-2015-3017[R]. Reston, VA:AIAA, 2015.
[2] 吴继飞. 内埋武器舱系统气动特性研究[D]. 绵阳:中国空气动力研究与发展中心, 2012. WU J F. Investigation on aerodynamic characteristics of internal weapons bay system[D]. Mianyang:China Aerodynamics Research and Development Center, 2012(in Chinese).
[3] 宋文成, 李玉军, 冯强.武器舱气动噪声主动流动控制技术风洞试验研究[J]. 空气动力学学报, 2016, 34(1):33-39. SONG W C, LI Y J, FENG Q. Wind tunnel test research on weapon bay cavity active flow control for acoustic[J]. Acta Aerodynamica Sinica, 2016, 34(1):33-39(in Chinese).
[4] MORTON M. Certification of the F-22 advanced tactical fighter for high cycle and sonic fatigue:AIAA-2007-1766[R]. Reston, VA:AIAA, 2007.
[5] SARPOTDAR S, PANICKAR P, RAMAN G. Cavity tone suppression using a rod in cross flow investigation of shear layer stability mechanism:AIAA-2009-0700[R]. Reston, VA:AIAA, 2009.
[6] HANDA T, MIYACHI H, KAKUNO H, et al. Modeling of a feedback mechanism in supersonic deep-cavity flows[J]. AIAA Journal, 2015, 53(2):420-425.
[7] HANDA T, MIYACHI H, KAKUNO H, et al. Generation and propagation of pressure waves in supersonic deep-cavity flows[J]. Experiments in Fluids, 2012, 53(6):1855-1866.
[8] SCHMIT R F, SEMMELMAYER F, HAVERKAMP M, et al. Fourier analysis of high speed shadowgraph images around a Mach 1.5 cavity flow field:AIAA-2011-3961[R]. Reston, VA:AIAA, 2011.
[9] MOON S J, GAI S L, KLEINE H H, et al. Supersonic flow over straight shallow cavities including leading and trailing edge modifications:AIAA-2010-4687[R]. Reston, VA:AIAA, 2010.
[10] KÄHLER C J, ASTARITA T, VLACHOS P P, et al. Main results of the 4th international PIV challenge[J]. Experiments in Fluids, 2016, 57(6):97.
[11] 孟晟, 杨臧健, 王明晓, 等. 纹影定量化在火焰温度测量中的应用[J]. 实验流体力学, 2015, 29(4):65-69. MENG S, YANG Z J, WANG M X, et al. Application of quantitative schlieren method in flame temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4):65-69(in Chinese).
[12] BAUKNECHT A, MERZ C B, RAFFEL M. Blade-tip vortex detection in maneuvering flight using the background-oriented schlieren technique[J]. Journal of Aircraft, 2014, 51(6):2005-2014.
[13] BATHEL B F, BORG S E, JONES S, et al. Development of background-oriented schlieren for NASA Langley Research Center ground test facilities:AIAA-2015-1691[R]. Reston, VA:AIAA, 2015.
[14] MIZUKAKI T, BORG S, DANEHY P M, et al. Background-oriented schlieren for large-scale and high-speed aerodynamic phenomena:AIAA-2015-1692[R]. Reston, VA:AIAA, 2015.
[15] 张天天, 易仕和, 朱杨柱, 等. 基于背景纹影波前传感技术的气动光学波前重构与校正[J]. 物理学报, 2015, 64(8):084201. ZHANG T T, YI S H, ZHU Y Z, et al. Reconstruction and calibration on aero-optical wavefront aberration based on background oriented schlieren based wavefront sensing[J]. Acta Physica Sinica, 2015, 64(8):084201(in Chinese).
[16] AKATSUKA J, NAGAI S. Flow visualization by a simplified BOS technique:AIAA-2011-3653[R]. Reston, VA:AIAA, 2011.
[17] 吕小亮. 背景纹影技术的温度场测量[D]. 杭州:浙江大学, 2011:23-25. LÜ X L. Temperature measurement based on background oriented schlieren[D]. Hangzhou:Zhejiang University, 2011:23-25(in Chinese).
[18] 张征宇, 黄叙辉, 尹疆, 等. 风洞试验中的视频测量技术现状与应用综述[J]. 空气动力学学报, 2016, 34(1):70-79. ZHANG Z Y, HUANG X H, YIN J, et al. Research status and application of videogrammetric measurement techniques for wind tunnel testing[J]. Acta Aerodynamica Sinica, 2016, 34(1):70-79(in Chinese).
[19] 赵涛, 张征宇, 王水亮, 等. 大幅面气动光学波前畸变场测量与重构[J]. 光学学报, 2013, 33(10):1012003. ZHAO T, ZHANG Z Y, WANG S L, et al. Measurement and reconstruction for large aero-optics wavefront distortion field[J]. Acta Optica Sinica, 2013, 33(10):1012003(in Chinese).
[20] 张征宇, 黄叙辉, 尹疆, 等. 高速风洞试验中的视频测量技术进展[J].实验流体力学, 2015, 29(2):1-7. ZHANG Z Y, HUANG X H, YIN J, et al. Progress of videogrammetric measurement techniques for high speed wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2):1-7(in Chinese).
[21] LIU T S, BURNER A W, JONES T W, et al. Photogrammetric techniques for aerospace applications[J]. Progress in Aerospace Sciences, 2012, 54(1):1-58.
[22] 黄桂平. 数字近景工业摄影测量关键技术研究与应用[D]. 天津:天津大学, 2005:54-59. HUANG G P. Study on the key technologies of digital close range industrial photogrammetry and applications[D]. Tianjin:Tianjin University, 2005:54-59(in Chinese).
[23] 罗川, 张征宇, 孙岩, 等. 模型变形视频测量的相机位置坐标与姿态角确定[J]. 实验流体力学, 2010, 24(6):88-91. LUO C, ZHANG Z Y, SUN Y, et al. Exterior orientation for videogrammetric model deformation measurement[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(6):88-91(in Chinese).
[24] 张征宇, 罗川, 孙岩, 等. 振动环境中相机位置坐标与姿态角解算的试验研究[J]. 实验流体力学, 2011, 25(3):56-59. ZHANG Z Y, LUO C, SUN Y, et al. Experimental investigation on exterior orientation in vibration environment[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):56-59(in Chinese).
[25] NEALE W T, HESSEL D, TERPSTRA T. Photogrammetric measurement error associated with lens distortion:SAE Technical Paper 2011-01-0286[R]. Warrendale:SAE International, 2011.
[26] 张征宇, 黄诗捷, 罗川, 等. 基于共面条件的摄像机非线性畸变自校正[J]. 光学学报, 2012, 32(1):0115002. ZHANG Z Y, HUANG S J, LUO C, et al. Nonlinear distortion correction of camera based on coplanar condition equations[J]. Acta Optica Sinica, 2012, 32(1):0115002(in Chinese).
[27] 张征宇, 朱龙, 黄叙辉, 等. 基于前方交会的5点相对定向[J]. 光学学报, 2015, 35(1):0115001. ZHANG Z Y, ZHU L, HUANG X H, et al. Five-point relative orientation based on forward intersection[J]. Acta Optica Sinica, 2015, 35(1):0115001(in Chinese).

Outlines

/