Special Column of Internal Flow and Heat Transfer Technology Development in Aero-engine

A review of research on intercoolers and recuperators in aero-engines

  • ZHAO Bi ,
  • XUAN Yimin
Expand
  • College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2016-11-15

  Revised date: 2017-01-21

  Online published: 2017-02-28

Abstract

To satisfy the demands for cheaper and environment-friendly aero-engines of future aircraft, intercooled recuperated cycle has been given much attention to in the past few years. Research on intercoolers and recuperators in aero-engines has become one of the key factors restricting the development of aero-engines that utilizing intercooled recuperated cycle. Research background of intercooled recuperated aero-engines is briefly introduced. Studies on heat transfer surfaces of intercoolers and recuperators in intercooled recuperated aero-engine both home and abroad are reviewed, as well as research on optimization of heat exchangers, installation and use of intercoolers and recuperators in intercooled recuperated aero-engines and the development of new type of high temperature heat exchanger technologies. Future research on intercoolers and recuperators in intercooled recuperated aero-engines is also proposed.

Cite this article

ZHAO Bi , XUAN Yimin . A review of research on intercoolers and recuperators in aero-engines[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(9) : 520934 -520934 . DOI: 10.7527/S1000-6893.2017.620934

References

[1] MCDONALD C F. Low costrecuperator concept for microturbine applications[C]//ASME Turbo Expo 2000: Power for Land, Sea, and Air. New York: ASME, 2000.
[2] 杨静. 船用ICR燃气轮机一次表面回热器的性能研究[D]. 上海: 上海交通大学, 2003: 2-3. YANG J. Research on performance of primary surfacerecuperator for ICR marine gas turbine[D]. Shanghai: Shanghai Jiao Tong University, 2003: 2-3 (in Chinese).
[3] ALVES M A, CARNEIRO H F, BARBOSA J R, et al. An insight on intercooling and reheat gas turbinecycles[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2001, 215(2):163-171.
[4] MCDONALD C F, MASSARDO A F, RODGERS C, et al. Recuperated gas turbineaeroengines, part Ⅱ: Engine design studies following early development testing[J]. Aircraft Engineering and Aerospace Technology, 2008, 80(3): 280-294.
[5] MCDONALD C F, MASSARDO A F, RODGERS C, et al. Recuperated gas turbineaeroengines, Part Ⅲ: Engine concepts for reduced emissions, lower fuel consumption, and noise abatement[J]. Aircraft Engineering and Aerospace Technology, 2008, 80(4): 408-426.
[6] BAKER N, ROLT A. Intercooled turbofan engine de-sign and technology research in the EU framework 6 NEWAC programme[C]//Proceedings of the ISABE. Reston, VA: AIAA, 2009: 7-11.
[7] 沈虹, 周军, 陈玉洁, 等. 欧盟间冷回热循环燃气涡轮发动机发展综述[J]. 燃气涡轮试验与研究, 2016, 29(1): 10-13. SHEN H, ZHOU J, CHEN Y J, et al. The development of intercooled recuperated cycle aero-engine in Europe Union[J]. Gas Turbine Experiment and Research, 2016, 29(1):10-13 (in Chinese).
[8] BROCKETT W, KOSCHIER A. LV100 AIPS technology-For future army propulsion[C]//ASME 1992 International Gas Turbine andAeroengine Congress and Exposition. New York: ASME, 1992.
[9] ITO Y, NAGASAKI T. Suggestion of intercooled and recuperated jet engine using already equippedcomponents as heat exchangers[C]//Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, VA: AIAA, 2011: 1-16.
[10] ITO Y, INOKURA N, NAGASAKI T. Conjugate heat transfer in air-to-refrigerant airfoil heat exchangers[J]. Journal of Heat Transfer, 2014, 136(8): 081703.
[11] 童传琛, 娄德仓, 朱晓华. 间冷回热涡扇发动机回热器在喷管内的安装布局研究[J]. 燃气涡轮试验与研究, 2016, 29(1): 41-46. TONG C C, LOU D C, ZHU X H. Installation layout of recuperator in nozzle for an intercooled recuperated engine[J]. Gas Turbine Experiment and Research, 2016, 29(1): 41-46 (in Chinese).
[12] 娄德仓, 冯松涛, 康涌. 间冷回热循环发动机回热器管路系统设计优化[J]. 燃气涡轮试验与研究, 2016, 29(1): 47-52. LOU D C, FENG S T, KANG Y. Pipe system design optimization forrecuperator of intercooled recuperated gas turbine engine[J]. Gas Turbine Experiment and Research, 2016, 29(1): 47-52 (in Chinese).
[13] 周雷, 娄德仓, 郭文, 等. 间冷回热循环发动机回热器套管结构优化[J]. 燃气涡轮试验与研究, 2016, 29(1): 53-58. ZHOU L, LOU D C, GUO W, et al. Structural optimization onrecuperator guide vane of intercooled recuperated aero-engine[J]. Gas Turbine Experiment and Research, 2016, 29(1): 53-58 (in Chinese).
[14] 曹梦源, 唐海龙, 陈敏. 中冷回热航空涡扇发动机热力循环初步分析[J]. 航空动力学报, 2009, 24(11): 2465-2470. CAO M Y, TANG H L, CHEN M. Preliminary analysis of thermodynamic cycle of an intercooled recuperated turbofanengine[J]. Journal of Aerospace Power, 2009, 24(11): 2465-2470 (in Chinese).
[15] 龚昊, 王占学, 康涌, 等. 间冷回热航空发动机性能计算与分析[J]. 航空动力学报, 2014, 29(6): 1453-1461. GONG H, WANG Z X, KANG Y, et al. Performance calculation and analysis of intercooled recuperated aero-engine[J]. Journal of Aerospace Power, 2014, 29(6): 1453-1461 (in Chinese).
[16] 李刚团, 黄莺, 龚昊. 大涵道比间冷回热涡扇发动机总体方案研究[J]. 燃气涡轮试验与研究, 2016, 29(1): 1-9. LI G T, HUANG Y, GONG H. Study of an intercooled recuperated turbofan engine with high bypassratio[J]. Gas Turbine Experiment and Research, 2016, 29(1): 1-9 (in Chinese).
[17] 刘喜岳, 张靖周, 李刚团, 等. 双U型管束模型换热器的流动和传热特性[J]. 航空学报, 2015, 36(12): 3832-3842. LIU X Y, ZHANG J Z, LI G T, et al. Flow and heat transfer performance of double U-shaped-tubes modeled heat exchanger[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3832-3842 (in Chinese).
[18] 刘喜岳, 张靖周, 李刚团, 等. 串列U型管束换热器压降与回热效率模型实验[J]. 航空学报, 2017, 38(3): 106-114. LIU X Y, ZHANG J Z, LI G T, et al. Model experiment on pressure drop and thermal recovery efficiency of tandem double-U-shaped-tubes heat exchangers[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 106-114 (in Chinese).
[19] 刘喜岳, 张靖周, 李刚团, 等. 双U形管束换热器压降和热效率模型实验[J]. 航空动力学报, 2015, 30(11): 2592-2599. LIU X Y, ZHANG J Z, LI G T, et al. Model experiment on pressure drop and thermal efficiency of double U-shaped tubes heat exchanger[J]. Journal of Aerospace Power, 2015, 30(11): 2592-2599 (in Chinese).
[20] 文超柱. 舰载燃气轮机间冷器的设计与研究[D]. 上海: 上海交通大学, 2009: 8-21. WEN C Z. Design and study on intercooling heat exchanger of marine gasturbine[D]. Shanghai: Shanghai Jiao Tong University, 2009: 8-21 (in Chinese).
[21] 李贝贝. 船用燃气轮机回热器的设计与研究[D]. 哈尔滨: 哈尔滨工程大学, 2013: 7-15. LI B B. Design and study on recuperator of marine gas turbine[D]. Harbin: Harbin Engineering University, 2013: 7-15 (in Chinese).
[22] MURRAY J J, HEMPSELL C M, BOND A. An experimental precooler for airbreathing rocket engines[J]. Journal of the British Interplanetary Society, 2001, 54 (5/6): 199-209.
[23] GOULAS A, KATHEDER K, PALIKARAS A, et al. Flow measurements and investigations in a staggered tube matrix of a heat exchanger[J]. International Journal of Heat and Technology, 2003, 21(2): 55-63.
[24] CIOFALO M, PIAZZA I D, STASIEK J A.Investigation of flow and heat transfer in corrugated-undulated plate heat exchangers[J]. Heat and Mass Transfer, 2000, 36(5): 449-462.
[25] STASIEK J, COLLINS M W, CIOFALO M, et al. Investigation of flow and heat transfer in corrugated passages-I. Experimental results[J]. International Journal of Heat and Mass Transfer, 1996, 39(1): 149-164.
[26] CIOFALO M, STASIEK J, COLLINS M W. Investigation of flow and heat transfer in corrugated passages-Ⅱ. Numerical simulations[J]. International Journal of Heat and Mass Transfer, 1996, 39(1):165-192.
[27] UTRIAINEN E, SUNDÉN B. A comparison of some heat transfer surfaces for small gas turbinerecuperators[C]//ASME Turbo Expo 2001: Power for Land, Sea, and Air. New York: ASME, 2001.
[28] 梁红侠, 王秋旺, 彭波涛, 等. 微型燃气轮机回热器换热表面的对比研究[J]. 工程热物理学报, 2004, 25(4): 688-690. LIANG H X, WANG Q W, PENG B T, et al. Comparison of heat transfer surfaces foemicroturbine recuperators[J]. Journal of Engineering Thermophysics, 2004, 25(4): 688-690 (in Chinese).
[29] GUI X H, SONG X, LI T, et al. Analysis on three-dimensional flow and heat transfer in a cross wavy primary surface recuperator for a microturbine system[J]. Thermal Science, 2015, 19(2): 489-496.
[30] DOO J H, HA M Y, MIN J K, et al. An investigation of cross-corrugated heat exchanger primary surfaces for advanced intercooled-cycle aero engines (Part-I: Novel geometry of primary surface)[J]. International Journal of Heat and Mass Transfer, 2012, 55(19-20): 5256-5267.
[31] DOO J H, HA M Y, MIN J K, et al. An investigation of cross-corrugated heat exchanger primary surfaces for advanced intercooled-cycle aero engines (Part-Ⅱ: Design optimization of primary surface)[J]. International Journal of Heat and Mass Transfer, 2013, 61(20): 138-148.
[32] KIM M S, HA M Y, MIN J K, et al. Numerical study on the cross-corrugated primary surface heat exchanger having asymmetric cross-sectional profiles for advanced intercooled-cycle aeroengines[J]. International Journal of Heat and Mass Transfer, 2013, 66(20): 139-153.
[33] LEE J M, KWAN P W, SON C M, et al. Characterizations of aerothermal performance of novel cross-corrugated plate heat exchangers for advanced cycle aero-engines[J]. International Journal of Heat and Mass Transfer, 2015, 85: 166-180.
[34] 高海红, 王巍巍, 李刚团, 等. 俄罗斯间冷回热循环技术研究[J]. 燃气涡轮试验与研究, 2016, 29(1): 14-20. GAO H H, WANG W W, LI G T, et al. The overview of Russian intercooled recuperated cycle technology[J]. Gas Turbine Experiment and Research, 2016, 29(1): 14-20 (in Chinese).
[35] GUO Z Y, LI D Y, WANG B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221-2225.
[36] WEBB R L, KIM N H. Principles of enhanced heattransfer[M]. NY: Taylor & Francis, 2005: 1-31.
[37] KAYS W M, LONDON A L. 紧凑式热交换器[M]. 宣益民, 张后雷, 译. 北京: 科学出版社, 1997: 43-44. KAYS W M, LONDON A L. Compact heat exchangers[M]. XUAN Y M, ZHANG H L, translated. Beijing: Science Press, 1997: 43-44 (in Chinese).
[38] PRASAD B N, SAINI J S. Optimal thermohydraulic performance of artificially roughened solar air heaters[J]. Solar Energy, 1991, 47(2): 91-96.
[39] PRASAD B N, SAINI J S. Effect of artificial roughness on heat transfer and friction factor in a solar airheater[J]. Solar Energy, 1988, 41(6): 555-560.
[40] HAN J C, ZHANG Y M, LEE C P. Augmented heat transfer in square channels with parallel, crossed, and V-shaped angledribs[J]. Journal of Heat Transfer, 1991, 113(3): 590-596.
[41] TASLIM M E, LI T, KERCHER D M. Experimental heat transfer and friction in channels roughened with angled, V-shaped, and discrete ribs on two opposite walls[J]. Journal of Turbomachinery, 1996, 118(1): 20-28.
[42] LANJEWAR A, BHAGORIA J L, SARVIYA R M. Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorberplate[J]. Energy, 2011, 36(7): 4531-4541.
[43] AHARWAL K R, GANDHI B K, SAINI J S. Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar airheater[J]. Renewable Energy, 2008, 33(4): 585-596.
[44] KARWA R, SOLANKI S C, SAINI J S. Heat transfer coefficient and friction factor correlations for the transitional flow regime in rib-roughened rectangularducts[J]. International Journal of Heat and Mass Transfer, 1999, 42(9): 1597-1615.
[45] BHAGORIA J L, SAINI J S, SOLANKI S C. Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorberplate[J]. Renewable Energy, 2002, 25(3): 341-369.
[46] SAINI R P, VERMA J. Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar airheaters[J]. Energy, 2008, 33(8):1277-1287.
[47] ZHANG Y M, GU W Z, HAN J C, et al. Heat transfer and friction in rectangular channels with ribbed or ribbed-grooved walls[J]. Journal of Heat Transfer, 1994, 116(1): 58-65.
[48] LANJEWAR A M, BHAGORIA J L, AGRAWAL M K. Review of development of artificial roughness in solar air heater and performance evaluation of different orientations for double arc ribroughness[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 1214-1223.
[49] HANDOYO E A, ICHSANI D, PRABOWO, et al. Numerical studies on the effect of delta-shaped obstacles’ spacing on the heat transfer and pressure drop in V-corrugated channel of solar airheater[J]. Solar Energy, 2016, 131: 47-60.
[50] GAWANDE V B, DHOBLE A S, ZODPE D B, et al. Experimental and CFD investigation of convection heat transfer in solar air heater with reverse L-shapedribs[J]. Solar Energy, 2016, 131: 275-295.
[51] PANDEY N K, BAJPAI V K. Experimental investigation of heat transfer and friction characteristics of arc-shaped roughness elements having central gaps on the absorber plate of solar airheater[J]. Journal of Solar Energy Engineering, 2016, 138(4): 041005.
[52] YADAV S, KAUSHAL M, VARUN, et al.Nusselt number and friction factor correlations for solar air heater duct having protrusions as roughness elements on absorber plate[J]. Experimental Thermal and Fluid Science, 2013, 44: 34-41.
[53] KAREEM Z S, JAAFAR M N M, LAZIM T M, et al. Passive heat transfer enhancement review in corrugation[J]. Experimental Thermal and Fluid Science, 2015, 68: 22-38.
[54] JI W T, JACOBI A M, HE Y L, et al. Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipeflow[J]. International Journal of Heat and Mass Transfer, 2015, 88: 735-754.
[55] KUMAR A, PRASAD B N. Investigation of twisted tape inserted solar water heaters-Heat transfer, friction factor and thermal performance results[J]. Renewable Energy, 2000, 19(3): 379-398.
[56] EIAMSA-ARD S, YONGSIRI K, NANAN K, et al. Heat transfer augmentation by helically twisted tapes as swirl and turbulence promoters[J]. Chemical Engineering and Processing: Process Intensification, 2012, 60:42-48.
[57] SHABANIAN S R, RAHIMI M, SHAHHOSSEINI M, et al. CFD and experimental studies on heat transfer enhancement in an air cooler equipped with different tubeinserts[J]. International Communications in Heat and Mass Transfer, 2011, 38(3): 383-390.
[58] PROMVONGE P, KOOLNAPADOL N, PIMSARN M, et al. Thermal performance enhancement in a heat exchanger tube fitted with inclined vortex rings[J]. Applied Thermal Engineering, 2014, 62(1): 285-292.
[59] KONGKAITPAIBOON V, NANAN K, EIAMSA-ARD S. Experimental investigation of heat transfer and turbulent flow friction in a tube fitted with perforated conical-rings[J]. International Communications in Heat and Mass Transfer, 2010, 37(5): 560-567.
[60] ISMAIL L S, VELRAJ R, RANGANAYAKULU C. Studies on pumping power in terms of pressure drop and heat transfer characteristics of compact plate-fin heat exchangers-A review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 478-485.
[61] DU J, QIAN Z Q, DAI Z Y. Experimental study and numerical simulation of flow and heat transfer performance on an offset plate-fin heat exchanger[J]. Heat and Mass Transfer, 2016, 52(9): 1791-1806.
[62] BHUIYAN AA, ISLAM A K M S. Thermal and hydraulic performance of finned-tube heat exchangers under different flow ranges: A review on modeling and experiment[J]. International Journal of Heat and Mass Transfer, 2016, 101: 38-59.
[63] NAGARANI N, MAYILSAMY K, MURUGESAN A, et al. Review of utilization of extended surfaces in heat transfer problems[J]. Renewable and Sustainable Energy Reviews, 2014, 29(7): 604-613.
[64] SHAH R K, LONDON A L. Laminar flow forced convection inducts[J]. Journal of Fluids Engineering, 1978, 102(2): 431-455.
[65] FAN J F, DING W K, ZHANG J F, et al. A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving[J]. International Journal of Heat and Mass Transfer, 2009, 52(1-2): 33-44.
[66] BEJAN A, KESTIN J. Entropy generation through heat and fluidflow[J]. Journal of Applied Mechanics, 1982, 50(2):475.
[67] 过增元, 梁新刚, 朱宏晔. 火积--描述物体传递热量能力的物理量[J]. 自然科学进展, 2006, 16(10): 1288-1296. GUO Z Y, LIANG X G, ZHU H Y.Entransy-A physical quantity describes the ability of heat transfer of object[J]. Progress in Natural Science, 2006, 16(10): 1288-1296 (in Chinese).
[68] MISHRA M, DAS P K, SARANGI S. Second law based optimization of crossflow plate-fin heat exchanger design using genetic algorithm[J]. Applied Thermal Engineering, 2009, 29(14-15): 2983-2989.
[69] LEE S M, KIM K Y. Optimization of zigzag flow channels of a printed circuit heat exchanger for nuclear power plant application[J]. Journal of Nuclear Science and Technology, 2012, 49(3): 343-351.
[70] LEE S M, KIM K Y, KIM S W. Multi-objective optimization of a double-faced type printed circuit heat exchanger[J]. Applied Thermal Engineering, 2013, 60(1-2): 44-50.
[71] BABU B V, MUNAWAR S A. Differential evolution strategies for optimal design of shell-and-tube heat exchangers[J]. Chemical Engineering Science, 2007, 62(14): 3720-3739.
[72] CHEN Q.Entransy dissipation-based thermal resistance method for heat exchanger performance design and optimization[J]. International Journal of Heat and Mass Transfer, 2013, 60(1): 156-162.
[73] WEN J, YANG H Z, TONG X, et al. Optimization investigation on configuration parameters of serrated fin in plate-fin heat exchanger using genetic algorithm[J]. International Journal of Thermal Sciences, 2016, 101: 116-125.
[74] FESANGHARY M, DAMANGIR E, SOLEIMANI I. Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm[J]. Applied Thermal Engineering, 2009, 29(5-6): 1026-1031.
[75] PATEL V K, RAO R V. Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique[J]. Applied Thermal Engineering, 2010, 30(11-12): 1417-1425.
[76] TRAVERSO A, ZANZARSI F,MASSARDO A. Cheope: A tool for the optimal design of compact recuperators[C]//ASME Turbo Expo 2004: Power for Land, Sea, and Air. New York: ASME, 2004: 115-123.
[77] OLIVEIRA L M, NASCIMENTO M A R, MENON G J, et al. The thermal impact of using syngas as fuel in the regenerator of regenerative gas turbine engine[J]. Journal of Engineering for Gas Turbines and Power, 2009, 132(6): 201-209.
[78] WALKER A D, CARROTTE J F, ROLT A M. Duct aerodynamics for intercooled aero gas turbines: Constraints, concepts and design methodology[C]//ASME Turbo Expo 2009: Power for Land, Sea, and Air. New York: ASME, 2009: 749-758.
[79] CAMILLERI W, ANSELMI E, SETHI V, et al. Concept description and assessment of the main features of a geared intercooled reversed flow core engine[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(9): 1631-1639.
[80] ANDRIANI R, GAMMA F, GHEZZI U. Numerical analysis of intercooled and recuperated turbofan engine[J]. International Journal of Turbo & Jet-Engines, 2011, 28(2): 139-149.
[81] LUNDBLADH A, SJUNNESSON A. Heat exchanger weight and efficiency impact on jet engine transport applications: AIAA-2003-1122[R]. Reston, VA: AIAA, 2003.
[82] DEWANJI D, RAO G A, BUIJTENEN J V. Feasibility study of some novel concepts for high bypass ratio turbofan engines[C]//ASME Turbo Expo 2009: Power for Land, Sea, and Air. New York: ASME, 2009: 51-61.
[83] 龚昊, 王占学, 刘增文. 间冷回热循环航空发动机参数匹配研究[J]. 航空动力学报, 2012, 27(8): 1809-1814. GONG H, WANG Z X, LIU Z W. Study on thermodynamic cycle parameter matching for intercooled recuperated aero-engine[J]. Journal of Aerospace Power, 2012, 27(8): 1809-1814 (in Chinese).
[84] GRÖNSTEDT T, KYPRIANIDIS K G. Optimizing the operation of the intercooled turbofan engine[C]//ASME Turbo Expo 2010: Power for Land, Sea, and Air. New York: ASME, 2010: 627-633.
[85] 刘永泉, 刘太秋, 季路成. 航空发动机风扇/压气机技术发展的若干问题与思考[J]. 航空学报, 2015, 36(8): 2563-2576. LIU Y Q, LIU T Q, JI L C. Some problems and thoughts in the development of aero-engine fan/compressor[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2563-2576 (in Chinese).
[86] WALKER A D, REGUNATH G S, CARROTTE J F, et al. Intercooled aero-gas-turbine duct aerodynamics: Core air delivery ducts[J]. Journal of Propulsion and Power, 2012, 28(6): 1188-1200.
[87] A’BARROW C, CARROTTE J F, WALKER A D, et al. Aerodynamic performance of a coolant flow off-take downstream of an OGV[C]//ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2011: 187-199.
[88] KWAN P W, GILLESPIE D R H, STIEGER R D, et al.Minimising loss in a heat exchanger installation for an intercooled turbofan engine[C]//ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2011: 189-200.
[89] MISSIRLIS D, YAKINTHOS K, PALIKARAS A, et al. Experimental and numerical investigation of the flow field through a heat exchanger for aero-engine applications[J]. International Journal of Heat and Fluid Flow, 2005, 26(3): 440-458.
[90] YAKINTHOS K J, MISSIRLIS D K, PALIKARAS A C, et al. Heat exchangers for aero engine applications[C]//ASME 2006 International Mechanical Engineering Congress and Exposition. New York: ASME, 2006: 653-662.
[91] ALBANAKIS C, YAKINTHOS K, KRITIKOS K, et al. The effect of heat transfer on the pressure drop through a heat exchanger for aero engine applications[J]. Applied Thermal Engineering, 2009, 29(4): 634-644.
[92] YAKINTHOS K, DONNERHACK S, MISSIRLIS D, et al. Derivation of an anisotropic model for the pressure loss through a heat exchanger for aero engine applications[C]//ASME Turbo Expo 2009: Power for Land, Sea, and Air. New York: ASME, 2009: 221-229.
[93] VLAHOSTERGIOS Z, MISSIRLIS D, FLOUROS M, et al. Effect of turbulence intensity on the pressure drop and heat transfer in a staggered tube bundle heat exchanger[J]. Experimental Thermal and Fluid Science, 2015, 60: 75-82.
[94] YAKINTHOS K, MISSIRLIS D, PALIKARAS A, et al. Optimization of the design of recuperative heat exchangers in the exhaust nozzle of an aeroengine[J]. Applied Mathematical Modelling, 2007, 31(11): 2524-2541.
[95] MISSIRLIS D, YAKINTHOS K, SEITE O, et al.Modeling an installation of recuperative heat exchangers for an aero engine[C]//ASME Turbo Expo 2010: Power for Land, Sea, and Air. New York: ASME, 2010: 281-289.
[96] MA T, CHEN Y T, ZENG M, et al. Stress analysis of internally finned bayonet tube in a high temperature heat exchanger[J]. Applied Thermal Engineering, 2012, 43(43): 101-108.
[97] ISLAMOGLU Y. Numerical analysis of the influence of a circular fin with different profiles on the thermal characteristics in a ceramic tube of heat transferequipment[J]. International Journal of Pressure Vessels and Piping, 2004, 81(7): 583-587.
[98] ZENG M, MA T, SUNDÉN B, et al. Effect of lateral fin profiles on stress performance of internally finned tubes in a high temperature heat exchanger[J]. Applied Thermal Engineering, 2013, 50(1): 886-895.
[99] XU S G, ZHAO Y L. Using FEM to determine the thermo-mechanical stress in tube to tube-sheet joint for the SCC failure analysis[J]. Engineering Failure Analysis, 2013, 34(6): 24-34.
[100] LIU L, DING N, SHI J B, et al. Failure analysis of tube-to-tubesheet welded joints in a shell-tube heat exchanger[J]. Case Studies in Engineering Failure Analysis, 2016, 7: 32-40.
[101] CHEN H, GONG J, GENG L, et al. Finite element prediction of residual stresses and thermal distortion in a brazed plate-fin structure[J]. Journal of Pressure Equipment and Systems, 2005, 3: 118-124.
[102] PONYAVIN V, SUBRAMANIAN S, DELOSIER C R, et al. Stress analysis of a high temperature heat exchanger used in an advanced nuclear reactor[C]//ASME 2005 International Mechanical Engineering Congress and Exposition. New York: ASME, 2005: 481-489.
[103] KAWASHIMA F, IGARI T, MIYOSHI Y, et al. High temperature strength and inelastic behavior of plate-fin structures for HTGR[J]. Nuclear Engineering and Design, 2007, 237(6): 591-599.
[104] MA H Q, CAI W H, ZHENG W K, et al. Stress characteristics of plate-fin structures in the cool-down process of LNG heat exchanger[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 1113-1126.
[105] MA H Q, CAI W H, YAO Y, et al. Investigation on stress characteristics of plate-fin structures in the heat-up process of LNG heat exchanger[J]. Journal of Natural Gas Science and Engineering, 2016, 30: 256-267.
[106] MA H Q, CHEN J, CAI W H, et al. The influence of operation parameters on stress of plate-fin structures in LNG heat exchanger[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 216-228.
[107] MA H Q, HOU C Q, YANG R X, et al. The influence of structure parameters on stress of plate-fin structures in LNG heat exchanger[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 85-99.
[108] ZHANG J, MA T, ZENG M, et al. Direct-coupling simulation of thermal-hydraulic and stress analysis in a cross-wave primary surface heat exchanger[C]//ASME 2014 International Mechanical Engineering Congress and Exposition. New York: ASME, 2014.
[109] SCHOENENBORN H, EBERT E, SIMON B, et al. Thermomechanical design of a heat exchanger for a recuperative aeroengine[J]. Journal of Engineering for Gas Turbines & Power, 2004, 128(4): 187-193.
[110] HEATIC. The exceptional performance ofHeatric PCHE heat exchangers[EB/OL]. (2016-11-15) http://www.heatric.com/heat_exchanger_performance.html, 2016.
[111] NIKITIN K, KATO Y, NGO L. Printed circuit heat exchanger thermal-hydraulic performance insupercritical CO2 experimental loop[J]. International Journal of Refrigeration, 2006, 29(5): 807-814.
[112] TSUZUKI N, KATO Y, ISHIDUKA T. High performance printed circuit heat exchanger[J]. Applied Thermal Engineering, 2007, 27(10): 1702-1707.
[113] PRA F, TOCHON P, MAUGET C, et al. Promising designs of compact heat exchangers for modular HTRs using the Brayton cycle[J]. Nuclear Engineering and Design, 2008, 238(11): 3160-3173.
[114] KIM D E, KIM M H, CHA J E, et al. Numerical investigation on thermal-hydraulic performance of new printed circuit heat exchanger model[J]. Nuclear Engineering and Design, 2008, 238(12): 3269-3276.
[115] KIM I H, NO H C, LEE J I, et al. Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations[J]. Nuclear Engineering and Design, 2009, 239(11): 2399-2408.
[116] FIGLEY J, SUN X D, MYLAVARAPU S K, et al. Numerical study on thermal hydraulic performance of a printed circuit heat exchanger[J]. Progress in Nuclear Energy, 2013, 68: 89-96.
[117] MYLAVARAPU S, SUN X D, FIGLEY J, et al. Investigation of high-temperature printed circuit heat exchangers for very high temperature reactors[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(6): 062905.
[118] MYLAVARAPU S K, SUN X D, CHRISTENSEN R N, et al. Fabrication and design aspects of high-temperature compact diffusion bonded heat exchangers[J]. Nuclear Engineering and Design, 2012, 249(10): 49-56.
[119] MYLAVARAPU S K, SUN X D, GLOSUP R E, et al. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility[J]. Applied Thermal Engineering, 2014, 65(1-2): 605-614.
[120] MA T, LI L, XU X Y, et al. Study on local thermal-hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature[J]. Energy Conversion and Management, 2015, 104: 55-66.
[121] MA T, XIN F, LI L, et al. Effect of fin-endwall fillet on thermal hydraulic performance of airfoil printed circuit heat exchanger[J]. Applied Thermal Engineering, 2015, 89: 1087-1095.
[122] SON S, LEE Y, LEE J I. Development of an ad-vanced printed circuit heat exchanger analysis code for realistic flow path configurations near header regions[J]. International Journal of Heat and Mass Transfer, 2015, 89: 242-250.
[123] YOON S J, SABHARWALL P, KIM E S. Numerical study on crossflow printed circuit heat exchanger for advanced small modular reactors[J]. International Journal of Heat and Mass Transfer, 2014, 70(3): 250-263.
[124] YOON S H, NO H C, KANG G B. Assessment of straight, zigzag, S-shape, and airfoil PCHEs for intermediate heat exchangers of HTGRs and SFRs[J]. Nuclear Engineering and Design, 2014, 270(5): 334-343.
[125] KIM I H, ZHANG X Q, CHRISTENSEN R, et al. Design study and cost assessment of straight, zigzag, S-shape, and OSF PCHEs for aFLiNaK-SCO2 secondary heat exchanger in FHRs[J]. Annals of Nuclear Energy, 2016, 94: 129-137.
[126] URQUIZA E, LEE K, PETERSON P F, et al. Multiscale transient thermal, hydraulic, and mechanical analysis methodology of a printed circuit heat exchanger using an effective porous media approach[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(4): 041011.
[127] KUMAR V, PANDA P, MONGIA H. Conceptual design of aeropropulsion engine heat exchangers part 2: Offset fin micro channels[C]//Proceedings of 51th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA: AIAA, 2013.
[128] PANDA P, KUMAR V, MONGIA H. Conceptual design of aeropropulsion engine heat exchangers part 3: Printed circuit heat exchanger[C]//Proceedings of 51th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA: AIAA, 2013.
[129] PANDA P, KUMAR V, MONGIA H, et al. Innovative approaches for reducing CO2 emissions of aviation engines part 4: Turbine exhaust driven thermal cycle TED-T: AIAA-2012-4230[R]. Reston, VA: AIAA, 2012.
[130] TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5):126-129.
[131] GUO Z Y, LI Z X. Size effect on microscale single-phase flow and heat transfer[J]. International Journal of Heat and Mass Transfer, 2003, 46(1):149-159.
[132] MECILI M, MEZAACHE E H. Slug flow-heat transfer in parallel plate microchannel including slip effects and axial conduction[J]. Energy Procedia, 2013, 36(16): 268-277.
[133] MECILI M, MEZAACHE E H. Analytical prediction for slip flow-heat transfer inmicrotube and parallel plate microchannel including viscous dissipation[J]. International Journal of Heat and Technology, 2011, 29(2): 79-86.
[134] ZADE A Q, RENKSIZBULUT M, FRIEDMAN J. Heat transfer characteristics of developing gaseous slip-flow in rectangular microchannels with variable physical properties[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 117-127.
[135] ZHANG T T, JIA L, LI C W, et al. Experimental study on single-phase gas flow in microtubes[J]. Journal of Heat Transfer, 2011, 133(11): 111703.
[136] YANG C Y, CHEN C W, LIN T Y, et al. Heat transfer and friction characteristics of air flow in microtubes[J]. Experimental Thermal and Fluid Science, 2012, 37(2): 12-18.
[137] LIN T Y, KANDLIKAR S G. Heat transfer investigation of air flow inmicrotubes-Part I: Effects of heat loss, viscous heating, and axial conduction[J]. Journal of Heat Transfer, 2013, 135(3): 317031-317039.
[138] LIN T Y, KANDLIKAR S G. Heat transfer investigation of air flow in microtubes-Part Ⅱ: Scale and axial conduction effects[J]. Journal of Heat Transfer, 2013, 135(3): 317041-317046.
[139] EBRAHIMI A, ROOHI E, KHERADMAND S. Numerical study of liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators[J]. Applied Thermal Engineering, 2015, 78: 576-583.
[140] MARSHALL S D, ARAYANARAKOOL R, BALASUBRAMANIAM L, et al. Heat exchanger improvement via curved microfluidic channels: Part 1-Impact of cross-sectional geometry and channel design on heat transfer enhancement[C]//ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. New York: ASME, 2016.
[141] MARSHALL S D, ARAYANARAKOOL R, BALASUBRAMANIAM L, et al. Heat exchanger improvement via curved microfluidic channels: Part 2-Investigation into heat transfer enhancement due to the dynamics of dean vortices[C]//ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. New York: ASME, 2016.
[142] ZOU Y, HRNJAK P S. Experiment and visualization on R134a upward flow in the vertical header of microchannel heat exchanger and its effect on distribution[J]. International Journal of Heat and Mass Transfer, 2013, 62(1): 124-134.
[143] WILLIAMS M, MULEY A, BOLLA J, et al. Advanced heat exchanger technology for aerospace applications: SAE-2008-01-2903[R].Warrendale, PA: SAE, 2008.
[144] SHETH R B, HUMBLE P H, WEGENG R S, et al. Performance characterization of a microchannel liquid/liquid heat exchanger throughout an extended duration life test[C]//Proceedings of the 41st International Conference on Environmental Systems. Reston, VA: AIAA, 2011.
[145] VARVILL R, BOND A. The SKYLON spaceplane-Progress torealisation[J]. Journal of the British Interplanetary Society, 2008, 61(10): 22-32.
[146] 邹正平, 刘火星, 唐海龙, 等. 高超声速航空发动机强预冷技术研究[J]. 航空学报, 2015, 36(8): 2544-2562. ZOU Z P, LIU H X, TANG H L, et al. Precooling technology study of hypersonic aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2544-2562 (in Chinese).

Outlines

/