ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Test on interactions between aeroacoustic noise and structural vibration in elastic cavity flow
Received date: 2016-10-20
Revised date: 2016-11-04
Online published: 2017-02-13
Supported by
National Natural Science Foundation of China (11602287,11402286)
Coupling between aeroacoustic noise loads and structural vibration in cavity flow-induced oscillation may bring about severe damage to aircraft, especially when structural resonance occurs. To study the coupling mechanism, elastic cavity tests are performed in a high-speed wind tunnel with 0.6 m×0.6 m cross-section. The natural frequency of the elastic cavity structure can be adjusted by changing the thickness of its floor. Noise and vibration transducers are employed in the tests to obtain acoustic noise loads and structural vibrations. The Mach number ranges from 0.6 to 1.2. It is shown that under the current conditions, structural vibration has little effect on cavity noise, while cavity noise has an important influence on structural vibration. At the main frequency position of cavity noise, power spectral density of structural vibration peaks and correlation of noise/vibration are the strongest. In addition, structural vibration is also closely related to the natural frequency of the cavity, and vibration is dominated by the low-order mode.
WANG Xiansheng , YANG Dangguo , LIU Jun , SHI Ao , ZHOU Fangqi , LYU Binbin . Test on interactions between aeroacoustic noise and structural vibration in elastic cavity flow[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(7) : 120873 -120873 . DOI: 10.7527/S1000-6893.2017.120873
[1] SEINER J M, JANSEN B J, MURRAY N E. Weapons bay acoustic suppression at Mach 2: AIAA-2008-0060[R]. Reston: AIAA, 2008.
[2] WAGNER J L, BERESH S J, CASPER K M, et al. Relationship between transonic cavity tones and flowfield dynamics using pulse-burst PIV: AIAA-2016-1345[R]. Reston: AIAA, 2016.
[3] ROWLEY C W, WILLIAMS D R. Dynamics and control of high-Reynolds-number flow over open cavities[J]. Annual Review of Fluid Mechanics, 2006, 38(1): 251-276.
[4] SHANKAR P N, DESHPANDE M D. Fluid mechanics in the driven cavity[J]. Annual Review of Fluid Mechanics, 2000, 32(1): 93-136.
[5] ROSSITER J E. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds: No.3438[R]. Aeronautical Research Council Reports and Memoranda, 1964.
[6] HELLER H H, HOLMES D G, COVERT E E. Flow-induced pressure oscillations in shallow cavities[J]. Journal of Sound and Vibration, 1974, 18(4): 545-553.
[7] STALLINGS R L J, WILCOX F J J. Experimental cavity pressure distributions at supersonic speeds: NASA Technical Paper-2683[R]. Washington, D.C.: NASA, 1987.
[8] BERESH S J, WAGNER J L, PRUETT B O M, et al. Supersonic flow over a finite-width rectangular cavity[J]. AIAA Journal, 2015, 53(2): 296-310.
[9] ARUNAJATESAN S, BARONE M F, WAGNER J L, et al. Joint experimental/computational investigation into the effects of finite width on transonic cavity flow: AIAA-2014-3072[R]. Reston: AIAA, 2014.
[10] SCHMIT R F, GROVE J E, SEMMELMAYER F, et al. Nonlinear feedback mechanisms inside a rectangular cavity[J]. AIAA Journal, 2014, 52(10): 2127-2142.
[11] BIAN S, DRISCOLL J F, ELBING B R, et al. Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity[J]. Experiments in Fluids, 2011, 51(1): 51-63.
[12] BRES G A, COLONIUS T. Three-dimensional instabilities in compressible flow over open cavities[J]. Journal of Fluid Mechanics, 2008, 599(90): 309-339.
[13] CROOK S D, LAU T C W, KELSO R M. Three-dimensional flow within shallow, narrow cavities[J]. Journal of Fluid Mechanics, 2013, 735(11): 587-612.
[14] ZHUANG N, ALVI F S, ALKISLAR M B, et al. Supersonic cavity flows and their control[J]. AIAA Journal, 2006, 44(9): 2118-2128.
[15] SAHOO D, ANNASWAMY A, ZHUANG N, et al. Control of cavity tones in supersonic flow: AIAA-2005-0793[R]. Reston: AIAA, 2005.
[16] LI W, NONOMURA T, FUJⅡ K. Mechanism of controlling supersonic cavity oscillations using upstream mass injection[J]. Physics of Fluids, 2013, 25(8): 545-553.
[17] UKEILEY L S, PONTON M K, SEINER J M, et al. Suppression of pressure loads in cavity flows[J]. AIAA Journal, 2004, 42(1): 70-79.
[18] DUDLEY J G, UKEILEY L. Passively controlled supersonic cavity flow using a spanwise cylinder[J]. Experiments in Fluids, 2014, 55(9): 1-22.
[19] WILLIAMS D R, FABRIS D, MORROW J. Experiments on controlling multiple acoustic modes in cavities: AIAA-2000-1903[R]. Reston: AIAA, 2000.
[20] ROWLEY C W, COLONIUS T. On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities[J]. Journal of Fluid Mechanics, 2002, 455(455): 315-346.
[21] UKEILEY L, MURRAY N. Velocity and surface pressure measurements in an open cavity[J]. Experiments in Fluids, 2005, 38(5): 656-671.
[22] LIU X, KATZ J. Vortex-corner interactions in a cavity shear layer elucidated by time-resolved measurements of the pressure field[J]. Journal of Fluid Mechanics, 2013, 728(4): 417-457.
[23] ZHANG X. Compressible cavity flow oscillation due to shear layer instabilities and pressure feedback[J]. AIAA Journal, 1995, 33(8): 1404-1411.
[24] 罗柏华, 胡章伟, 戴昌晖. 声激励抑制空腔流激振荡的实验研究[J]. 南京航空航天大学学报, 1999, 31(1): 1-4. LUO B H, HU Z W, DAI C H. Experimental study on suppression of cavity flow oscillations by means of acoustic excitation[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1999, 31(1): 1-4 (in Chinese).
[25] 侯中喜, 夏刚, 秦子增. 三维超声速开式空腔振荡特性研究[J]. 国防科学技术大学学报, 2004, 26(6): 1-4. HOU Z X, XIA G, QIN Z Z. The numerical analysis of oscillatory characteristics in 3D supersonic open cavity[J]. Journal of National University of Defense Technology, 2004, 26(6): 1-4 (in Chinese).
[26] 张强. 流动诱导空腔振荡频率方程的改进[J]. 振动工程学报, 2004, 17(1): 53-57. ZHANG Q. Improvements on the governing equation of frequencies of cavity flow induced oscillations[J]. Journal of Vibration Engineering, 2004, 17(1): 53-57 (in Chinese).
[27] 司海青, 王同光. 边界条件对三维空腔流动振荡的影响[J]. 南京航空航天大学学报, 2006, 38(5): 595-599. SI H Q, WANG T G. Influence of boundary conditions on 3D cavity flow induced oscillations[J]. Journal of Nanjing University of Aeroacoustics and Astronautics, 2006, 38(5): 595-599 (in Chinese).
[28] 李晓东, 刘靖东, 高军辉. 空腔流激振荡发生的数值模拟研究[J]. 力学学报, 2006, 38(5): 599-604. LI X D, LIU J D, GAO J H. Numerical simulation of flow-induced oscillation and sound generation in a cavity[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 599-604 (in Chinese).
[29] 杨党国, 范召林, 李建强, 等. 后壁倒角对空腔噪声的抑制效果[J]. 实验流体力学, 2010, 24(5): 22-25. YANG D G, FAN Z L, LI J Q, et al. Suppression effects of rear-face angle of cavity on its aerodynamics noise[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(5): 22-25 (in Chinese).
[30] 万振华, 周林, 孙德军. 方腔流致振荡及噪声的数值研究[J]. 空气动力学报, 2012, 30(3): 291-298. WAN Z H, ZHOU L, SUN D J. Numerical investigation of flow induced oscillations and noise in a rectangular cavity[J]. Acta Aerodynamica Sinica, 2012, 30(3): 291-298 (in Chinese).
[31] 李环, 方涛, 吴方良, 等. 不可压缩空腔流的振荡模式[J]. 力学学报, 2013, 45(5): 782-786. LI H, FANG T, WU F L, et al. The oscillation mode of incompressible cavity flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 782-786 (in Chinese).
[32] 吴继飞, 徐来武, 范召林, 等. 开式空腔气动声学特性及其流动控制方法[J]. 航空学报, 2015, 36(7): 2155-2165. WU J F, XU L W, FAN Z L, et al. Aeroacoustic characteristics and flow control method of open cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2155-2165 (in Chinese).
[33] 王一丁, 郭亮, 童明波, 等. 高速飞行器空腔脉动压力主动控制与非线性数值模拟[J]. 航空学报, 2015, 36(1): 213-222. WANG Y D, GUO L, TONG M B, et al. Active control and nonlinear numerical simulation for oscillating pressure of high-speed aircraft cavity[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 213-222 (in Chinese).
[34] WAGNER J L, CASPER K M, BERESH S J, et al. Fluid-structure interactions in compressible cavity flows[J]. Physics of Fluids, 2015, 27(6): 152-165.
[35] 李周复. 风洞实验手册[M]. 北京: 航空工业出版社, 2015: 51-54. LI Z F. Handbook of wind tunnel test[M]. Beijing: The Aviation Industry Press, 2015: 51-54 (in Chinese).
[36] TAM C K W, BLOCK P J W. On the tones and pressure oscillations induced by flow over rectangular cavities[J]. Journal of Fluid Mechanics, 1978, 89(2): 373-399.
[37] RONA A. The acoustic resonance of rectangular and cylindrical cavities: AIAA-2007-3420[R]. Reston: AIAA, 2007.
[38] LARCHEVEQUE L, SAGAUT P, MARY I, et al. Large-eddy simulation of a compressible flow past a deep cavity[J]. Physics of Fluids, 2003, 15(1): 193-210.
/
〈 | 〉 |