ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Decentralized direct position determination method based on TDOA and FDOA
Received date: 2016-08-30
Revised date: 2016-12-22
Online published: 2017-01-09
Supported by
National Basic Research Program of China (61**81);National High-tech Research and Development Program of China (2014AA80**086H);the Fundamental Research Funds for the Central Universities (JB140203)
To overcome the bottleneck of data transmission capacity and computation of the original direct position determination (DPD) method based on TDOA and FDOA, two decentralized DPD methods are proposed. The first proposed method uses the decentralized sensor coupling scheme, in which the signal intercepted by each sensor is transmitted only once and data transmission and computation operations are dispersed to each sensor to compute cross ambiguity function (CAF) in parallel, so as to construct cross ambiguity matrix (CAM) with merely full rank. Based on the derivation of a formula for the relation between arbitrary CAFs, the second method applies a reduction operation to compute the remaining CAFs at each sensor in parallel, and complements all elements of CAM. Two decentralized DPD methods reduce the amount of data transmission and improve the efficiency of computation. Performance analysis and simulation results show that the accuracy of the proposed methods are superior to that of the two-step methods. At low SNR, both of the two proposed methods can achieve desired accuracy, and at high SNR, the second proposed method can obtain the accuracy similar to that of the original DPD method.
ZHU Yingtong , DONG Chunxi , DONG Yangyang , XU Jin , ZHAO Guoqing . Decentralized direct position determination method based on TDOA and FDOA[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(5) : 320727 -320727 . DOI: 10.7527/S1000-6893.2016.320727
[1] 赵国庆. 雷达对抗原理[M]. 第2版. 西安:西安电子科技大学出版社, 2012:9-11. ZHAO G Q. Principle of radar countermeasure[M]. 2nd ed. Xi'an:Xidian University Press, 2012:9-11 (in Chinese).
[2] POURHOMAYOUN M, FOWLER M L. Distributed computation for direct position determination emitter location[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4):2878-2889.
[3] WAX M, KAILATH T. Decentralized processing in sensor arrays[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4):1123-1129.
[4] WEISS A J. Direct position determination of narrowband radio frequency transmitters[J]. IEEE Signal Processing Letters, 2004, 11(5):513-516.
[5] WEISS A J. Direct position determination in the presence of model errors-known waveforms[J]. Elsevier Digital Signal Processing, 2006, 16(1):52-83.
[6] AMAR A, WEISS A J. Localization of radio emitters based on Doopler frequency shifts[J]. IEEE Transactions on Signal Processing, 2008, 56(11):5500-5508.
[7] WEISS A J. Direct geolocation of wideband emitters based on delay and Doopler[J]. IEEE Transactions on Signal Processing, 2011, 59(6):2513-2521.
[8] OISPUU M, NICKEL U. Direct detection and position determination of multiple sources with intermittent emission[J]. Signal Processing, 2010, 90:3056-3064.
[9] 张敏, 郭福成, 周一宇. 基于单个长基线干涉仪的运动单站直接定位[J]. 航空学报, 2013, 34(2):378-386. ZHANG M, GUO F C, ZHOU Y Y. A single moving observer direct position determination method using a long baseline interferometer[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):378-386 (in Chinese).
[10] 张敏, 郭福成, 周一宇, 等. 运动单站干涉仪相位差直接定位方法[J]. 航空学报, 2013, 34(9):2185-2193. ZHANG M, GUO F C, ZHOU Y Y, et al. A single moving observer direct position determination method using interferometer phase difference[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2185-2193 (in Chinese).
[11] 王鼎, 张刚, 沈彩霞, 等. 一种针对恒模信号的运动单站直接定位算法[J]. 航空学报, 2016, 37(5):1622-1633. WANG D, ZHANG G, SHEN C X, et al. A direct position determination algorithm for constant modulus signals[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1622-1633 (in Chinese).
[12] BOSSE J, FERREOL A, GERMOND C, et al. Passive geolocalization of radio transmitters:Algorithm and performance in narrow band context[J]. Signal Processing, 2012, 92:841-852.
[13] 黄志英, 吴江, 唐涛, 等. 非一致噪声下的多阵列直接定位算法[J]. 西安交通大学学报, 2015, 49(10):136-142. HUANG Z Y, WU J, TANG T, et al. A direct position determination algorithm based on multi arrays in the presence of unknown nonuniform noise[J]. Journal of Xi'an Jiaotong University, 2015, 49(10):136-142 (in Chinese).
[14] VANKAYALAPATI N, KAY S M. Asymptotically optimal localization of an emitter of low probability of intercept signals using distributed sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1):737-748.
[15] VANKAYALAPATI N, KAY S M, DING Q. TDOA based direct positioning maximum likelihood estimator and the Cramer-Rao bound[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3):1616-1635.
[16] FOWLER M L, CHEN M, BINGHAMTON S. Fisher-information-based data compression for estimation using two sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3):1131-1137.
[17] CHEN M, FOWLER M L. Data compression for multiple parameter estimation with application to emitter location systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1):308-322.
[18] 王云龙, 吴瑛. 联合时延与多普勒频率的直接定位改进算法[J]. 西安交通大学学报, 2015, 49(4):123-129. WANG Y L, WU Y. An improved direct position determination algorithm with combined time delay and Doppler[J]. Journal of Xi'an Jiaotong University, 2015, 49(4):123-129 (in Chinese).
[19] XIA W, LIU W. Distributed adaptive direct position determination of emitters in sensor networks[J]. Signal Processing, 2016, 123:100-111.
[20] XIA W, LIU W, ZHU L F. Distributed adaptive direct position determination based on diffusion framework[J]. Journal of Systems Engineering and Electronics, 2016, 27(1):28-38.
[21] KNAPP C H, CARTER G C. The generalized correlation method for estimation of time delay[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1976, 24(4):320-327.
[22] STEIN S. Algorithms for ambiguity function processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(3):588-599.
[23] 朱颖童, 董春曦, 刘松杨, 等. 存在观测站位置误差的转发式时差无源定位[J]. 航空学报, 2016, 37(2):706-716. ZHU Y T, DONG C X, LIU S Y, et al. Passive localization using retransmitted tdoa measurements in the presence of sensor position errors[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):706-716 (in Chinese).
[24] MENG W, XIE L H, XIAO W D. Decentralized TDOA sensor pairing in multihop wireless sensor networks[J]. IEEE Signal Processing Letters, 2013, 20(2):181-184.
[25] CATTIVELLI F S, SAYED A H. Diffusion LMS strategies for distributed estimation[J]. IEEE Transactions on Signal Processing, 2010, 58(3):1035-1048.
[26] TORRIERI D J. Statistical theory of passive location systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, 20(2):183-198.
[27] 张林波. 并行计算导论[M]. 北京:清华大学出版社, 2006:52-53. ZHANG L B. Introduction to parallel computing[M]. Beijing:Tsinghua University Press, 2006:52-53 (in Chinese).
[28] KAY S M. Fundamentals of statistical signal processing:Estimation theory[M]. Upper Saddle River, NJ:Prentice Hall, 1993:39-40.
[29] 郭福成, 樊昀, 周一宇, 等. 空间电子侦察定位原理[M]. 北京:国防工业出版社, 2012:155-158. GUO F C, FAN Y, ZHOU Y Y, et al. Localization principles in space electronic reconnaissance[M]. Beijing:National Defense Press, 2012:155-158 (in Chinese).
[30] AMAR A, LEUS G, FRIEDLANDER B. Emitter localization given time delay and frequency shift measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2):1826-1837.
[31] HO K C, XU W W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9):2453-2463.
/
〈 | 〉 |