ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Numerical study of shock wave and bypass transitional boundary layer interaction in a supersonic compression ramp
Received date: 2016-01-13
Revised date: 2016-03-17
Online published: 2017-01-03
Supported by
National Natural Science Foundation of China (91441103, 11372330, 11472278)
A direct numerical simulation (DNS) of shock wave and bypass transitional boundary layer interaction for a 24° compression ramp at Mach number Ma∞=2.9 is conducted. The intricate flow phenomena in the ramp-corner, including separation bubble characteristics and shock wave behavior, have been studied systematically. The DNS results of transitional interaction are compared with the corresponding turbulent interaction and the reasons for the differences are analyzed. The evolution of the transitional boundary layer in the ramp is researched. The fluctuation of wall pressure and distribution of skin friction coefficient in transitional interaction are investigated in detail. Results indicate that the distribution of coherent vortex structures is non-uniform in the spanwise direction and the separation bubble is reduced to a V-shape by the mutual interactions of the hairpin vortices chains. The shock fronts are destroyed badly and even break down by the interaction. The multiple layer of shock foots is observed obviously. The interactions rapidly accelerate the evolution of transition and greatly amplify the intensity of fluctuations. The peak of wall pressure fluctuations appears with single-peak structure at the downstream of separation region. And the overshoot of skin friction induced by transitional interaction is explained by the strong Reynolds shear stress and high turbulent kinetic energy.
TONG Fulin , TANG Zhigong , LI Xinliang , WU Xiaojun , ZHU Xingkun . Numerical study of shock wave and bypass transitional boundary layer interaction in a supersonic compression ramp[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(12) : 3588 -3604 . DOI: 10.7527/S1000-6893.2016.0096
[1] HOLDEN M S. Reviews of aerothermal problems associated with hypersonic flight:AIAA-1986-0267[R]. Reston:AIAA, 1986.
[2] ANDREOPOULOS J, MUCH K. Some new aspects of the shock wave/boundary layer interaction in compression ramp flows[J]. Journal of Fluid Mechanics, 1987, 180:405-428.
[3] EDWARDS J R. Numerical simulations of shock/boundary layer interactions using time dependent modeling techniques:A survey of recent results[J]. Progress in Aerospace Sciences, 2008, 44(6):447-465.
[4] KNIGHT D, LONGO J, DRIKAKIS D, et al. Assessment of CFD capability for prediction of hypersonic shock interactions[J]. Progress in Aerospace Sciences, 2012, 48-49(2):8-26.
[5] DELERY J M. Shock wave/turbulent boundary layer interaction and its control[J]. Progress in Aerospace Sciences, 1985, 22(4):209-280.
[6] CLEMENS N T, NARAYANASWAMY V. Low frequency unsteadiness of shock wave turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46(1):469-492.
[7] GAITONDE D V. Progress in shock wave boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72:80-99.
[8] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research:what next?[J]. AIAA Journal, 2001, 39(8):1517-1530.
[9] SANDHAM N D, SCHULEIN E. Transitional shock wave/boundary layer interactions in hypersonic flow[J]. Journal of Fluid Mechanics, 2014, 752:349-382.
[10] ERDEM E, KONTIS K, JOHNSTONE E. Experiments on transitional shock wave boundary layer interactions at Mach 5[J]. Experiments in Fluids, 2013, 54(10):1598-1620.
[11] SCHRIJER F J. Experiments on hypersonic boundary layer separation and reattachment on a blunted cone flare using quantitative infrared thermograph:AIAA-2003-6967[R]. Reston:AIAA, 2003.
[12] XIE S F, GONG J, JI F. Research of flow field characteristics of hypersonic shock wave/transitional boundary layer interaction:AIAA-2015-3569[R]. Reston:AIAA, 2015.
[13] TERAMOTO S. Large eddy simulation of transitional boundary layer with impinging shock wave[J]. AIAA Journal, 2005, 43(11):2354-2363.
[14] KRISHNAN L, SANDHAM N D. Shock wave/boundary layer interactions in a model Scramjet intake[J]. AIAA Journal, 2009, 47(7):1680-1691.
[15] TOKURA Y, MAEKAWA H. DNS of a spatially evolving transitional turbulent boundary layer with impinging shock wave:AIAA-2011-0729[R]. Reston:AIAA, 2011.
[16] LUDEKE H, SANDHAM N. Direct numerical simulation of the transition process in a separated supersonic ramp flow:AIAA-2010-4470[R]. Reston:AIAA, 2010.
[17] 童福林, 李新亮, 唐志共, 等. 转捩对压缩拐角激波/边界层干扰分离泡的影响[J]. 航空学报, 2016, 37(10):2909-2921. TONG F L, LI X L, TANG Z G, et al. Transition effect on separation bubble in a compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):2909-2921(in Chinese).
[18] RINGUETTE M J, BOOKEY P, WYCKHAM C, et al. Experimental study of a Mach 3 compression ramp interaction at Reθ=2400[J]. AIAA Journal, 2009, 47(2):373-385.
[19] BOOKEY P, WYCKHAM C. SMITS A J, et al. New experimental data of STBLI at DNS/LES accessible Reynolds numbers:AIAA-2005-0309[R]. Reston:AIAA, 2005.
[20] WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4):879-889.
[21] MARTIN M P, TAYLOR E M, WU M, et al. A bandwidth optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1):270-289.
[22] PIROZZOLI S, GRASSO F. GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3):530-545.
[23] GAO H, FU D X, MA Y W, et al. Direct numerical simulation of supersonic turbulent boundary layer flow[J]. Chinese Physics Letters, 2005, 22(7):1709-1712.
[24] LI X L, FU D X, MA Y W, et al, Acoustic calculation for supersonic turbulent boundary flow[J]. Chinese Physics Letters, 2009, 26(9):094701.
[25] LI X L, FU D X, MA Y W, et al. Direct numerical simulation of shock wave turbulent boundary layer interaction in a supersonic compression ramp[J]. Science China:Physics, Mechanics & Astronomy, 2010, 53(9):1651-1658.
[26] WU P P, MILES R B. Megahertz visualization of compression-corner shock structures[J]. AIAA Journal, 2001, 39(8):1542-1546.
[27] LEE C B, WU J Z. Transition in wall-bounded flows[J]. Applied Mechanics Reviews, 2008, 61(3):0802.
[28] PIROZZOLI S, BERNARDINI M. Direct numerical simulation database for Impinging shock wave/turbulent boundary layer interaction[J]. AIAA Journal, 2011, 49(6):1307-1312.
[29] SKOTE M, HENNINGSON D S. Direct numerical simulation of a separated turbulent boundary layer[J]. Journal of Fluid Mechanics, 2002, 374(5):379-405.
[30] LOGINOV M S, ADAMS N A, ZHELTOVODOV A A. Large eddy simulation of shock wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2006, 565(1):135-169.
[31] DAWSON D M, LELE S K. Large eddy simulation of a three dimensional compression ramp shock turbulent boundary layer interaction:AIAA-2015-1518[R]. Reston:AIAA, 2015.
[32] FUKAGATA K, IWAMOTO K, KASAGI N. Contribution of Reynolds stress distribution to the skin friction in wall bounded flows[J]. Physics of Fluids, 2002, 14(11):L73-L76.
/
〈 | 〉 |