ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Efficient GMRES algorithm in time spectral method
Received date: 2016-10-27
Revised date: 2016-12-04
Online published: 2016-12-26
Supported by
National Natural Science Foundation of China for Excellent Young Scholars (11622220);Programme of Introducing Talents of Discipline to Universities (B17037)
In this paper, the computational efficiency of the time-spectral method for solving the periodic unsteady flow field is studied, and the implicit method of time spectral method for solving the periodic unsteady flow is discussed. When the number of sampling points increases or the reduced frequency magnifies, the diagonal dominant property of the Jacobian matrix corresponding to the time spectral method deteriorates rapidly, resulting in the failure of many traditional iterative methods. In order to solve the problems above, the generalized minimum residual (GMRES) algorithm with preprocessing is used to improve the computational convergence of the Jacobian matrix. The time spectral method is used to compute the NACA0012 airfoil forced oscillation, and the computational efficiency and accuracy is compared with that of the time-domain difference method. The results show that the time spectral method can generally improve the computational efficiency an order of magnitude with saturated computational accuracy. For the transonic periodic flow, the GMRES algorithm is superior to SGS iterative algorithm both in stability and computational convergence.
GONG Yiming , LIU Zhanhe , LIU Yilang , ZHANG Weiwei . Efficient GMRES algorithm in time spectral method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(7) : 120894 -120894 . DOI: 10.7527/S1000-6893.2016.120894
[1] HALL K C, CRAWLEY E F. Calculation of unsteady flows in turbomachinery using the linearized Euler equations[J]. AIAA Journal, 1989, 27(6): 777-787.
[2] NING W, HE L. Computation of unsteady flows around oscillation blades using linear and nonlinear harmonic Euler methods[J]. Journal of Turbomachinery, 1998, 120(3): 508-514.
[3] HALL K C, THOMAS J P, CLARK W S. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[J]. AIAA Journal, 2002, 40(5): 879-886.
[4] MCMULLEN M, JAMESON A, ALONSO J J. Acceleration of convergence to a periodic steady state in turbomachinery flows: AIAA-2001-0152[R]. Reston: AIAA, 2001.
[5] MCMULLEN M, JAMESON A, ALONSO J J. Application of a nonlinear frequency domain solver to the Euler and Navier-Stokes equations: AIAA-2002-0120[R]. Reston: AIAA, 2002.
[6] DAI H H, YUE X K, YUAN J P, et al. A time domain collocation method for studying the aeroelasticity of a two dimensional airfoil with a structural nonlinearity[J]. Journal of Computational Physics, 2014, 270: 214-237.
[7] GOPINATH A K, JAMESON A. Time spectral method for periodic unsteady computations over two- and three- dimensional bodies: AIAA-2005-1220[R]. Reston: AIAA, 2005.
[8] VAN DER WEIDE E, GOPINATH A K, JAMESON A. Turbomachinery applications with the time spectral method: AIAA-2005-4905[R]. Reston: AIAA, 2005.
[9] CHOI S, POTSDAM M, LEE K, et al. Helicopter rotor design using a time-spectral and adjoint-based method: AIAA-2008-5810[R]. Reston: AIAA, 2008.
[10] GOMAR A, BONVY Q, SICOT F, et al. Convergence of Fourier-based time methods for turbomachinery wake passing problems[J]. Journal of Computational Physics, 2014, 278(C): 229-256.
[11] GOPINATH A K, JAMESON A. Application of the time spectral method to periodic unsteady vortex shedding: AIAA-2006-0449[R]. Reston: AIAA, 2006.
[12] 杨小权, 程苏堃, 杨爱明, 等. 基于时间谱方法的振荡翼型和机翼非定常黏性绕流数值模拟[J]. 航空学报, 2013, 34(4): 787-797. YANG X Q, CHENG S K, YANG A M, et al. Time spectral method for numerical simulation of unsteady viscous flow over oscillating airfoil and wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 787-797 (in Chinese).
[13] 谢立军, 杨云军, 刘周, 等. 基于时间谱方法的飞行器动导数高效计算技术[J]. 航空学报, 2015, 36(6): 2016-2026. XIE L J, YANG Y J, LIU Z, et al. A high efficient method for computing dynamic derivatives of aircraft based on time spectral method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6): 2016-2026 (in Chinese).
[14] 詹磊, 刘锋. 应用傅里叶时间谱方法求解二维跨音速流动问题解的精度研究[J]. 航空工程进展, 2015, 6(4): 395-404. ZHAN L, LIU F.Study on accuracy of the solutions using the Fourier time spectral method for two-dimensional transonic flows[J]. Advances in Aeronautical Science and Engineering, 2015, 6(4): 395-404 (in Chinese).
[15] JAMESON A, SHANKARAN S. An assessment of dual-time stepping, time spectral and artificial compressibility based numerical algorithms for unsteady flow with applications to flapping wings[C]//19th AIAA Computational Fluid Dynamics. Reston: AIAA, 2009.
[16] MAVRIPLIS D J, YANG Z. Time spectral method for periodic and quasi-periodic unsteady computations on unstructured meshes[J]. Mathematical Modelling of Natural Phenomena, 2011, 6(3): 213-236.
[17] SAAD Y, SCHULTZ M H. GMRES: A generalized minimal residual algorithm for solvingnonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3): 856-869.
[18] JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal, 1987, 25(7): 929-935.
[19] 李春娜, 叶正寅, 王刚. 基于二维非结构网格的GMRES隐式算法[J]. 西北工业大学学报, 2007, 25(5): 630-635. LI C N, YE Z Y, WANG G.GMRES implicit algorithm based on 2D unstructured meshes for solving Euler equations[J]. Journal of Northwestern Polytechnical University, 2007, 25(5): 630-635 (in Chinese).
[20] 刘巍, 张理论, 王勇献, 等. 计算空气动力学并行编程基础[M]. 北京: 国防工业出版社, 2013. LIU W, ZHANG L L, WANG Y X,et al. Computational aerodynamics parallel programming basis[M]. Beijing: National Defence Industry Press, 2013 (in Chinese).
[21] LANDON R H. NACA0012 oscillatory and transient pitching: AGARD-R-702 [R]. Paris: AGARD, 1982.
/
〈 | 〉 |