ACTA AERONAUTICAET ASTRONAUTICA SINICA >
New method for predicting 3-D water droplet impingement on rotor considering influence of shadow zone
Received date: 2016-09-01
Revised date: 2016-11-25
Online published: 2016-12-05
Supported by
National Natural Science Foundation of China (11272150)
For the complex 3-D viscous flowfield of the helicopter rotor, a new 3-D Eulerian method is established for calculating the droplet impingement on the rotor. The Computional Fluid Dynamics (CFD) simulation method for predicting the rotor flowfield is developed based on the embedded grid method. Considering the 3-D effect of the rotor fully, the 3-D flowfield of droplets on the same embedded grids is solved by the Eulerian method to overcome the defects of the traditional 2-D calculation method. To overcome the problem of numerical stability and convergence by the density impulse in the wake area, a shadow zone dispersion model is proposed. In the model, a shadow variable is used to control the generation and dispersion of the shadow cells. The new Eulerian method is validated by comparing the calculation and experiment results of NACA0012 airfoil and UH-1H rotor in hover. In addition, the effects of the atmospheric temperature and Median Volumetric Diameter (MVD) of the droplet on the droplet impingement on the rotor are calculated and analyzed. Results show that the computation time of the 2-D droplet impingement property is reduced by 22% and the calculation stability of 3-D droplet impingement property is improved by using the shadow zone dispersion model. The droplet impingement area increases with the spanwise distance on the rotor blade. The maximum droplet local collection efficiency presents the change tendency of ‘increase-decrease-increase’, and the variation amplitude is close to 50%. The droplet impingement area and the collection efficiency increase with the increase of the MVD.
Key words: rotor; ice accretion; water droplet impingement property; Eulerian method; shadow zone; CFD
CHEN Xi , ZHAO Qijun . New method for predicting 3-D water droplet impingement on rotor considering influence of shadow zone[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(6) : 120745 -120745 . DOI: 10.7527/S1000-6893.2016.0313
[1] FLEMMING R J. The past twenty years of icing research and development at Sikorsky aircraft: AIAA-2002-0238[R]. Reston: AIAA, 2002.
[2] FLEMMING R J, ALLDRIDGE P, DOEPPNER R. Artificial icing tests of the S-92 helicopter in the McKinley Climatic Laboratory: AIAA-2004-0737[R]. Reston: AIAA, 2004.
[3] BRITTON R K, BOND T H, FLEMMING R J. An overview of a model rotor icing test in the NASA Lewis icing research tunnel: AIAA-1994-0716[R]. Reston: AIAA, 1994.
[4] WRIGHT W B, POTAPCZUK M G, LEVINSON L H. Comparison of LEWICE and GlennICE in the SLD regime: AIAA-2008-0439[R]. Reston: AIAA, 2008.
[5] IULIANO E, BRANDI V, MINGIONE G, et al. Water impingement prediction on multi-element airfoils by means of Eulerian and Lagrangian approach with viscous and inviscid air flow: AIAA-2006-1270[R]. Reston: AIAA, 2006.
[6] 胡剑平, 刘振侠, 张丽芬. 发动机整流支板大尺寸过冷水滴撞击特性[J]. 航空学报, 2011, 32(10): 1778-1785. HU J P, LIU Z X, ZHANG L F.Supercooled large droplet impact behaviors on an aero-engine strut[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1778-1785 (in Chinese).
[7] 易贤, 王开春, 桂业伟, 等. 结冰面水滴收集率欧拉计算方法研究及应用[J]. 空气动力学学报, 2010, 28(5): 596-601. YI X, WANG K C, GUI Y W, et al. Study on Eulerian method for icing collection efficiency computation and its application[J]. Acta Aerodynamica Sinica, 2010, 28(5): 596-601 (in Chinese).
[8] KIM J W, DENNIS P G, SANKAR L N, et al. Ice accretion modeling using an Eulerian approach for droplet impingement: AIAA-2013-0246[R]. Reston: AIAA, 2013.
[9] KINZEL M P, SAROFEEN C M, NOACK R W, et al. A finite-volume approach to modeling ice accretion: AIAA-2010-4230[R]. Reston: AIAA, 2010.
[10] BAIN J, SANKAR L N,GARZA D. A methodology for the prediction of rotor blade ice formation and shedding[C]//Proceedings of the SAE 2011 Aircraft and Engine icing and Ground Testing Conference. Warrendale, PA: SAE International, 2011.
[11] NARDUCCI R, KREEGER R E.Analysis of a hovering rotor in icing conditions: NASA/TM-2012-217126[R]. Washington, D.C.: NASA, 2012.
[12] CAO Y H, LI G Z, ZHONG G. Tandem helicopter trim and flight characteristics in the icing condition[J]. Journal of Aircraft, 2010, 47(5): 1559-1569.
[13] RAJMOHAN N, BAIN J, NUCCI M, et al. Icing studies for the UH-60A rotor in forward flight[C]//AHS Aeromechanics Specialists' Conference. Fairfax, VA: American Helicopter Society International, 2010.
[14] 张威, 林永峰, 陈平剑. 基于欧拉方法的旋翼翼型结冰数值模拟及参数影响[J]. 南京航空航天大学学报, 2011, 43(3): 375-380. ZHANG W, LIN Y F, CHEN P J. Numerical simulation of ice accretion and parameter effects based on Eulerian droplet model[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(3): 375-380 (in Chinese).
[15] BOURGAULT Y, HABASHI W G, DOMPIERRE J, et al. A Eulerian approach to supercooled droplets impingement calculations: AIAA-1997-0176[R]. Reston: AIAA, 1997.
[16] TONG X L, LUKE E A. Eulerian simulations of icing collection efficiency using a singularity diffusion model: AIAA-2005-1246[R]. Reston: AIAA, 2005.
[17] 杨胜华, 林贵平, 申晓斌. 三维复杂表面水滴撞击特性计算[J]. 航空动力学报, 2010, 25(2): 284-290. YANG S H, LIN G P, SHEN X B. Water droplet impingement prediction for three-dimensional complex surfaces[J]. Journal of Aerospace Power, 2010, 25(2): 284-290 (in Chinese).
[18] JUNG K Y, JUNG S K, MYONG R S, et al. A three-dimensional unstructured finite volume method for droplet impingement in aircraft icing: AIAA-2013-2576[R]. Reston: AIAA, 2013.
[19] LEE J D, HARDING R, PALKO R L. Documentation of ice shapes on the main rotor of a UH-1H helicopter in hover: NASA-CR-168332[R]. Washington, D.C.: NASA, 1984.
[20] 招启军, 徐国华. 新型桨尖旋翼悬停气动性能试验及数值研究[J]. 航空学报, 2009, 30(3): 422-429. ZHAO Q J, XU G H. Aerodynamic performance of rotor with new type blade-tip in hover based upon test and numerical investigations[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3): 422-429 (in Chinese).
[21] CAO Y H, MA C, ZHANG Q, et al. Numerical simulation of ice accretions on an aircraft wing[J]. Aerospace Science and Technology, 2012, 23(1): 296-304.
[22] 陈希, 招启军, 赵国庆. 计入离心力影响的直升机旋翼翼型结冰数值模拟[J]. 航空动力学报, 2014, 29(9): 2158-2165. CHEN X, ZHAO Q J, ZHAO G Q. Numerical simulation for ice accretion on rotor airfoil of helicopter considering the effects of centrifugal force[J]. Journal of Aerospace Power, 2014, 29(9): 2158-2165 (in Chinese).
/
〈 | 〉 |