Fluid Mechanics and Flight Mechanics

A dynamic structured grid generation method based on solving elliptic equations

  • LU Fengling ,
  • CHEN Xiaoqian ,
  • YU Caihui ,
  • MIAO Meng
Expand
  • 1. College of Aerospace Science and Engineering, National University of Defence Technology, Changsha 410073, China;
    2. Science and Technology on Space Physics Laboratory, Beijing 100076, China

Received date: 2016-07-21

  Revised date: 2016-11-20

  Online published: 2016-11-24

Abstract

A simple robust structured dynamic grid generation method based on the solution of elliptic partial differential equations is developed for computing the unsteady flows with moving boundaries. In the method, the source terms of the Poisson equation which can control the spacing and the orthogonality of the grid are inherited from the known static grid, and held fixed throughout the process of dynamic grid generation. With the process, the outer iterations for determining the source terms usually needed in the elliptic grid generation can thus be saved, and no adjustable parameters are required to be prescribed. This makes the method more efficient and easy to implement in an existing CFD code. The numerical results demonstrate that the proposed method can provide an efficient way of deforming the grid based on solving elliptic partial differential equations. The orthogonality and smoothness of original static grid can be maintained well by the proposed method. When the same number of iterations are given as the constraint condition, the grid generation efficiency of the method is lower than that of the spring analogy, but the robustness of the method is superior to the spring analogy.

Cite this article

LU Fengling , CHEN Xiaoqian , YU Caihui , MIAO Meng . A dynamic structured grid generation method based on solving elliptic equations[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(3) : 120632 -120632 . DOI: 10.7527/S1000-6893.2016.0303

References

[1] STEGER J L, DOUGHERTY F C, BENEK J A. A chimera grid scheme[C]//Mini Symposium on Advances in Grid Generation, 1982.
[2] CHAN W M, PANDYAY S A, ROGERS S E. Effcient creation of overset grid hole boundaries and effects of their locations on aerodynamic loads[C]//21st AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2013.
[3] KIM N, CHAN W M. Automation of hole-cutting for overset grids using the x-rays approach:AIAA-2011-3052[R]. Reston:AIAA, 2011.
[4] 王文, 阎超. 新型重叠网格洞面优化方法及其应用[J]. 航空学报, 2016, 37(3):826-835. WANG W, YAN C. Novel overlapping optimization algorithm of overlapping grid and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):826-835(in Chinese).
[5] 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2):303-319. ZHANG W W, GAO C Q, YE Z Y. Reseach progress on mesh deformation in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):303-319(in Chinese).
[6] FOSTER N F. Accuracy of high-order cfd and overset interpolation in finite volumee/difference codes[C]//22nd AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2015.
[7] UCHIDA Y, KANDA H. Spacing control of 3-D transfinite interpolation grid generation:AIAA-2005-5243[R]. Reston:AIAA, 2005.
[8] BATINA J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 1990, 28(8):1381-1388.
[9] BLOM F J. Considerations on the spring analogy[J]. International Journal of Numerical Methods in Fluid, 2000, 32(6):647-668.
[10] CANTARITI D L, GRIBBEN W M, BADCOCK K J, et al. A grid deformation technique for unsteady flow computations[J]. International Journal of Numerical Methods in Fluids, 2000, 32(3):285-311.
[11] 刘枫. 动网格技术研究及其在高超声速流动中的应用[D]. 长沙:国防科学技术大学, 2009:54-55. LIU F. Investigations of dynamic grid generation and its applications for supersonic flow[D]. Changsha:National University of Defense Technology, 2009:54-55(in Chinese).
[12] 郭正, 刘君, 翟章华. 用非结构动网格方法模拟有相对运动的多体绕流[J]. 空气动力学学报, 2001, 19(3):310-316. GUO Z, LIU J, ZHAI Z H. Simulation of flows past multi-body in relative motion with dynamic unstructured method[J]. Acta Aerodynamic Sinica, 2001, 19(3):310-316(in Chinese).
[13] TEZDUYAR T E. Stability finite element formulations for incompressible flow computations[J]. Advances in Applied Mechanics, 1992, 28(1):1-44.
[14] LIU X, QIN N, XIA H. Fast dynamic grid deformation based on delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2):405-423.
[15] BORE A, SCHOOT M S, FACULTY S H. Mesh deformation based on radial basis function interpolation[J]. Computers and Structures, 2007, 85(11):784-795.
[16] RENDALL T C S, ALLEN C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2010, 229(8):2810-2820.
[17] WANG G, HARIS H M, YE Z Y. An improved point selection method for hybrid unstructured mesh deformation using radial basis functions:AIAA-2013-3076[R]. Reston:AIAA, 2013.
[18] 魏其, 李春娜, 谷良贤, 等. 一种基于径向函数和峰值选择法的高效网格变形技术[J]. 航空学报, 2016, 37(7):1401-1414. WEI Q, LI C N, GU L X, et al. An efficient mesh deformation method based on radial basis functions and peak-selection method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):1401-1414(in Chinese).
[19] 孙岩, 邓小刚, 王光学, 等. 基于径向基函数改进的Delaunay图映射动网格方法[J]. 航空学报, 2014, 35(3):727-735. SUN Y, DENG X G, WANG G X, et al. An improvement on Delaunay graph mapping dynamic grid method based on radial basis functions[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):727-735(in Chinese).
[20] JOHNSON A A, TEZDUYAR T E. Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 119(1-2):73-94.
[21] USHIJIMA S. Three-dimensional arbitrary Lagrangian-Eulerian numerical prediction method for non-linear free surface oscillation[J]. International Journal for Numerical Methods in Fluids, 1998, 26(5):605-623.
[22] GRVBER B, CARTENS V. Computation of the unsteady transonic flow in harmonically oscillating turbine cascades taking into account viscous effects[J]. Journal of Turbomachinery, 1998, 120(1):104-111.
[23] THOMAS P D, MIDDLECOFF J F. Direct control of the grid point distribution in meshes generated by elliptic equations[J]. AIAA Journal, 1979, 18(6):652-656.
[24] SORENSON R L, STEGER J L. Numerical generation of 2D grids by the use of poisson equations with grids control:N81-14722[R]. 1981.
[25] SORENSON R L. A computer program to generate 2D grids about airfoil and other shapes by the use of poisson's equation:N80-26266[R]. 1980.
[26] HILGENSTOCK A. A fast method for the elliptic generation of three-dimensional grids with full boundary control[C]//Numerical Grid Generation in Computational Fluid Mechanics, 1988:137-146.
[27] SONAR T. Grid generation using elliptic partial differential equations:DFVLR-FB89-15[R]. 1989.
[28] GAITONDE A L, FIDDES S P. A moving mesh system for the calculation of unsteady flows:AIAA-1993-0641[R]. Reston:AIAA, 1993.
[29] LI J, HUANG S. Unsteady viscous flow simulations by a fully implicit method with deforming grid:AIAA-2005-1221[R]. Reston:AIAA, 2005.
[30] UNMEEL B M. Synthesis of contributed simulations for OREX test cases:NASA/TM-1998-112238[R]. Washington, D.C.:NASA, 1998.
[31] YOSHINAGA T, TATE A, WATANABE M. Dynamic test of the orbital reentry vehicle (OREX) in a transonic wind tunnel with comparison to flight data:AIAA-1995-1901-CP[R]. Reston:AIAA, 1995.
[32] THOMPSON J F. Numerical grid generation-foundations and applications[M]. North Holland:Amsterdam, 1985.
[33] SLATER J W. RAE2822 transonic airfoil:Study #1[EB/OL]. (2015-01-22)[2016-07-17]. http://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf.html.

Outlines

/