ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Post flutter response of flexible cantilever plate in low speed flow field
Received date: 2016-03-11
Revised date: 2016-11-14
Online published: 2016-11-21
Supported by
National Natural Science Foundation of China (11202165, 11402212)
A new nonlinear aeroelastic model is established for the analysis of post flutter behavior of the flexible cantilever plate in low speed flows. Geometric nonlinearity, aerodynamic nonlinearity as well as the strong coupling effect between geometric and aerodynamic nonlinearities are considered in the modeling. The aeroelastic model is verified with experimental data. The study shows that the flexible cantilever plate in low speed flows can enter into chaotic movement by means of periodic doubling in structural response. It is found that geometric nonlinearity and the unsteady aerodynamic effect caused by tip vortexes have significant impact on the structural response, while the unsteady aerodynamic force caused by deformation of wake vortexes has slight impact on the structural response. Different coupling strategies are also investigated to provide a reference for the selection of coupling strategy in nonlinear aeroelastic simulations of low-aspect-ratio flexible structures in low speed flows.
CHEN Tao , XU Min , XIE Dan , AN Xiaomin . Post flutter response of flexible cantilever plate in low speed flow field[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(3) : 120215 -120215 . DOI: 10.7527/S1000-6893.2016.0296
[1] DUNNMON J A, STANTON S C, MANN B P, et al. Power extraction from aeroelastic limit cycle oscillations[J]. Journal of Fluids and Structures, 2011, 27(8):1182-1198.
[2] DOARÉ O, MICHELIN S. Piezoelectric coupling in energy-harvesting fluttering flexible plates:Linear stability analysis and conversion efficiency[J]. Journal of Fluids and Structures, 2011, 27(8):1357-1375.
[3] LEE B H K, PRICE S J, WONG Y S. Nonlinear aeroelastic analysis of airfoils:Bifurcation and chaos[J]. Progress in Aerospace Sciences, 1999, 35(3):205-334.
[4] TANG D, DOWELL E H, HALL K C. Limit cycle oscillations of a cantilevered wing in low subsonic flow[J]. AIAA Journal, 1999, 37(3):364-371.
[5] ATTAR P J, DOWELL E H, WHITE J R. Modeling the LCO of a delta wing using a high fidelity structural model:AIAA-2004-1692[R]. Reston:AIAA, 2004.
[6] CAVALLARO R, IANNELLI A, DEMASI L, et al. Phenomenology of nonlinear aeroelastic responses of highly deformable joined-wings configurations:AIAA-2014-1199[R]. Reston:AIAA, 2014.
[7] ARENA A, LACARBONARA W, MARZOCCA P. Nonlinear aeroelastic formulation and postflutter analysis of flexible high aspect ratio wings[J]. Journal of Aircraft, 2013, 50(6):1748-1764.
[8] RELVAS A, SULEMAN A. Fluid-structure interaction modelling of nonlinear aeroelastic structures using the finite element corotational theory[J]. Journal of Fluids and Structures, 2006, 22(1):59-75.
[9] 尹维龙, 田东奎. 柔性翼型的气动弹性建模与颤振特性分析[J]. 哈尔滨工业大学学报, 2012, 44(9):69-72. YIN W L, TIAN D K. Aeroelastic modeling and flutter characteristics of flexible aerofoil[J]. Journal of Harbin Institute of Technology, 2012, 44(9):69-72(in Chinese).
[10] 谢长川, 吴志刚, 杨超. 大展弦比柔性机翼的气动弹性分析[J]. 北京航空航天大学学报, 2003, 29(12):1087-1090. XIE C C, WU Z G, YANG C. Aeroelastic analysis of flexible large aspect ratio wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(12):1087-1090(in Chinese).
[11] 张健, 向锦武. 柔性飞机非线性气动弹性与飞行动力学耦合静、动态特性[J]. 航空学报, 2011, 32(9):1569-1582. ZHANG J, XIANG J W. Static and dynamic characteristics of coupled nonlinear aeroelasticity and flight dynamics of flexible aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1569-1582(in Chinese).
[12] GORDNIER R E, VISBAL M R. Development of a three-dimensional viscous aeroelastic solver for nonlinear panel flutter[J]. Journal of Fluids and Structures, 2002, 16(4):497-527.
[13] MURUA J, PALACIOS R, GRAHAM J M R. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics[J]. Progress in Aerospace Sciences, 2012, 55(5):46-72.
[14] 刘燚, 谢长川, 王立波, 等. 柔性飞机大变形曲面气动力计算及配平分析[J]. 工程力学, 2015, 32(10):239-249. LIU Y, XIE C C, WANG L B, et al. Nonplanar aerodynamic computation and trim analysis under large deflection of flexible aircraft[J]. Engineering Mechanics, 2015, 32(10):239-249(in Chinese).
[15] 宋磊, 杨华, 解静峰, 等. 基于改进涡格法的飞翼布局飞机稳定性导数计算[J]. 南京航空航天大学学报, 2014, 46(3):457-462. SONG L, YANG H, XIE J F, et al. Predicting stability derivatives of flying wing aircraft based on improved vortex lattice method[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2014, 46(3):457-462(in Chinese).
[16] ROCCIA B A, PREIDIKMAN S, MASSA J C, et al. Modified unsteady vortex-lattice method to study flapping wings in hover flight[J]. AIAA Journal, 2013, 51(11):2628-2642.
[17] 贺红林, 周翔. 柔性扑翼非定常涡格法气动力计算的改进与实现[J]. 航空学报, 2010, 31(6):1121-1126. HE H L, ZHOU X. Implementation of an improved unsteady vortex lattice method for flexible flapping-wing aerodynamic computation[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1121-1126(in Chinese).
[18] PIPERNO S, FARHAT C. Partitioned procedures for the transient solution of coupled aeroelastic problems-Part II:Energy transfer analysis and three-dimensional applications[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(24-25):3147-3170.
[19] VU-QUOC L, TAN X G. Optimal solid shells for non-linear analysis of multilayer composites. 1. Static[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(9-10):975-1016.
[20] CHEN T, XU M, XIE L. Aeroelastic modeling using geometrically nonlinear solid-shell element[J]. AIAA Journal, 2014, 52(9):1980-1993.
[21] LEVIN D, KATZ J. A vortex-lattice method for the calculation of the nonsteady separated flow over delta wings:AIAA-1980-1803[R]. Reston:AIAA, 1980.
[22] 曹志远. 板壳振动理论[M]. 北京:中国铁道出版社, 1989:455-457. CAO Z Y. Vibration theory of plates and shells[M]. Beijing:China Railway Press, 1989:455-457(in Chinese).
[23] XIE D, XU M, DAI H, et al. Observation and evolution of chaos for a cantilever plate in supersonic flow[J]. Journal of Fluids and Structures, 2014, 50(6):271-291.
[24] HALLISSY P B, CESNIK C E S. High-fidelity aeroelastic analysis of very flexible aircraft:AIAA-2011-1914[R]. Reston:AIAA, 2011.
/
〈 | 〉 |