Fluid Mechanics and Flight Mechanics

Design and property advantages analysis of double swept waverider

  • LIU Chuanzhen ,
  • BAI Peng ,
  • CHEN Bingyan
Expand
  • China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2016-09-21

  Revised date: 2016-11-07

  Online published: 2016-11-15

Supported by

National Natural Science Foundation of China (11672281)

Abstract

Based on the design of osculating cone waverider, the concept of double swept waverider is proposed. The relationships between design parameters and configuration parameters are derived. Employing the non-uniform rational B-spline (NURBS) to represent the design curve including circular arc and straight line to aid the waverider generating, this paper develops the method for creating the waverider with controllable configuration parameters, including the blunt head area, the sweep angle and the swept area. The computational fluid dynamics technology is applied to validate the effect of the design method, and the advantageous performances of the waverider are also studied. Results show that with appropriate configuration, the waverider has advantageous performances in subsonic characteristics, aerodynamic stability and nonlinear vortex lift, while maintaining the high hypersonic performance. The method provides a novel way to design the wide-velocity-range hypersonic vehicles.

Cite this article

LIU Chuanzhen , BAI Peng , CHEN Bingyan . Design and property advantages analysis of double swept waverider[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(6) : 120808 -120808 . DOI: 10.7527/S1000-6893.2016.0291

References

[1] NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. Journal of Royal Aeronautical Society, 1959, 63: 521-530.
[2] JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds using axisymmetric flow field[J]. Archive of Applied Mechanics, 1968, 37(1): 56-72.
[3] RASMUSSEN M L. Waverider configurations derived from inclined circular and elliptic cones[J]. Journal of Spacecraft and Rockets, 1980, 17(6): 537-545.
[4] 乐贵高, 马大为, 李自勇. 椭圆锥乘波体高超声速 流场数值计算[J]. 南京理工大学学报(自然科学版), 2006, 30(3): 257-260. LE G G, MA D W, LI Z Y. Computation of hypersonic flowfields for elliptic-cone-derived waverider[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2006, 30(3): 257-260 (in Chinese).
[5] 刘传振, 白鹏, 陈冰雁. 三维流场乘波体快速设计 方法及多目标优化[J]. 宇航学报, 2016, 37(5): 535-543. LIU C Z, BAI P, CHEN B Y. Rapid design and multiobject optimization for waverider from 3D flow [J]. Journal of Astronautics, 2016, 37(5): 535-543 (in Chinese).
[6] LOBBIA M A, SUZUKI K. Experimental investigation of a Mach 3.5 waverider designed using computational fluid dynamics[J]. AIAA Journal, 2015, 53(6): 1590-1601.
[7] SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock wave[C]//The First International Waverider Symposium. Maryland: University of Maryland, 1990.
[8] SZEMA K, LIU Z, MUNIPALLI R. An efficient GUI design tool for high-speed airbreathing propulsion in tegration: AIAA-2010-4362[R]. Reston: AIAA, 2010.
[9] 贺旭照, 倪鸿礼. 密切曲面锥乘波体——设计方法与性能分析[J]. 力学学报, 2011, 43(6): 1077-1082. HE X Z, NI H L. Osculating curved cone (OCC) wave-rider: Design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1077-1082 (in Chinese).
[10] BOWCUTT K G. Optimization of hypersonic waveriders derived from cone flows-including viscous effects[D]. Maryland: University of Maryland, 1986.
[11] 王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性于研究[J]. 中国科学: 技术科学,2009, 39(11): 1828-1835. WANG F M, DING H H, LEI M F. Aerodynamic char acteristics research on wide-speed range waverider configuration[J]. Scientia Sinica (Technologica), 2009, 39(11): 1828-1835 (in Chinese).
[12] 贾子安, 张陈安, 王柯穆, 等. 乘波布局高超声速飞行器纵向静稳定特性分析[J]. 中国科学: 技术科学, 2014, 44(10): 1114-1122. JIA Z A, ZHANG C A, WANG K M, et al. Longitudin-al static stability analysis of hypersonic waveriders[J]. Scientia Sinica (Technologica), 2014, 44(10): 1114-1122 (in Chinese).
[13] STARKEY R, LEWIS M. A simple analytical model for parametric studies of hypersonic waveriders: AIAA-1998-1616[R]. Reston: AIAA, 1998.
[14] RODI P E. The osculating flowfield method of wave-rider geometry generation: AIAA-2005-0511[R]. Reston: AIAA, 2005.
[15] RODI P E. Geometrical relationships for osculating cones and osculating flowfield waveriders[C]//The 49th Aerospace Science Meeting. Reston: AIAA, 2011.
[16] 段焰辉, 范召林, 吴文华. 定后掠角密切锥乘波体的生成和设计方法研究[J]. 航空学报, 2016, 37(10): 3023-3034. DUAN Y H, FAN Z L, WU W H. Research on the methods of generation and design of osculation cone wa-verider with constant angle of sweepback[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 3023-3034 (in Chinese).
[17] PIEGL L A, TILLER W. The NURBS book[M]. 2nd ed. New York: Springer-Verlag, 1997: 202-227.
[18] CORDA S, ANDERSON J. Viscous optimized hyper sonic waveriders designed from axisymmetric flow fields: AIAA-1988-0369[R]. Reston: AIAA, 1988.
[19] MILLER D S, WOOD R M. Lee-side flow over delta wings at supersonic speeds[J]. Journal of Aircraft, 1984, 21(9): 680-686.
[20] RODI P E. Vortex lift waverider configurations[C]//The 50th Aerospace Science Meeting. Reston: AIAA, 2012.

Outlines

/