Special Column of Aviation Guided Weapons

Multiple safety boundaries protection on aircraft icing

  • GUI Yewei ,
  • ZHOU Zhihong ,
  • LI Yinghui ,
  • XU Haojun
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. College of Architecture and Environment, Sichuan University, Chengdu 610065, China;
    3. Aeronautics and Astronautics Engineering College, Airforce Engineering University, Xi'an 710038, China

Received date: 2016-08-29

  Revised date: 2016-10-26

  Online published: 2016-11-10

Supported by

National Basic Research Program of China (2015CB755800); National Natural Science Foundation of China (11172314)

Abstract

Boundary protection is very important to guarantee the safety of aircraft. Current research on boundary protection based on flight dynamics does not take into consideration of all the factors of aircraft disaster by ice. In this paper, the current research status and progress of aircraft icing safety are reviewed. The influencing factors of disaster by ice and the laws are analyzed. The concept of multiple safety boundaries of iced aircraft is presented. Safety boundary in aircraft icing is divided into three types:boundary of weather, boundary of ice shape and boundary of flight performance. According to different factors such as the degree of deterioration of flight performance and the impact of flight control, each boundary is further divided into a number of boundaries. Some key problems of research on multiple safety boundary protection in aircraft icing are further analyzed to obtain some directions for further relevant research. This study can provide some reference for the applications of aircraft design, airworthiness certification, flight control, route planning, and optimization of protection rating.

Cite this article

GUI Yewei , ZHOU Zhihong , LI Yinghui , XU Haojun . Multiple safety boundaries protection on aircraft icing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(2) : 520723 -520734 . DOI: 10.7527/S1000-6893.2016.0280

References

[1] 裘燮纲, 韩凤华. 飞机防冰系统[M]. 北京:航空专业教材编审组, 1984:1-5. QIU X G, HAN F H. Aircraft anti-icing system[M]. Beijing:Aeronautic Specialty Textbook Read and Edit Group,1984:1-5(in Chinese).
[2] POTAPCZUK M G. A review of NASA Lewis' development plans for computational simulation of aircraft icing:AIAA-1999-0243[R]. Reston:AIAA, 1999.
[3] 王洪伟, 李先哲, 宋展. 通用飞机结冰适航验证关键技术及工程应用[J]. 航空学报, 2016, 37(1):335-350. WANG H W, LI X Z, SONG Z. Key airworthiness validation technologies for icing of general aviation aircraft and their engineering application[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):335-350(in Chinese).
[4] KIND R J, POTAPCZUK M G. Experimental and computational simulation of in-flight icing phenomena[J]. Progress in Aerospace Sciences, 1998, 34(5-6):275-345.
[5] POTAPCZUK M G, BERKOWITZ B M. An experimental investigation of multi-element airfoil ice accretion and resulting performance degradation:AIAA-1989-0752[R]. Reston:AIAA, 1989.
[6] CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35:11-21.
[7] BARTLETT, SCOTT C. An analytical study of icing similitude for aircraft engine testing:DOT/FAA/CT-86/35 and AEDC-TR-86-26[R]. 1986.
[8] KIND R J, POTAPCZUK M G. Experimental and computational simulation of in-flight icing phenomena[J]. Progress in Aerospace Science, 1998, 34:275-345.
[9] MICHAEL P, ARIEF R, WONG S C, et al. Water impingement experiments on a NACA 23012 airfoil with simulated glaze ice shapes:AIAA-2004-0565[R]. Reston:AIAA, 2004.
[10] RUFF G A, BERKOWITZ B M. Users manual for the NASA Lewis ice accretion prediction code(LEWICE):NASA CR185129[R]. Washington, D.C.:NASA, 1990.
[11] LAMPTON A, VALASEK J. Prediction of icing effects on the lateral/directional stability and control of light airplanes[J]. Aerospace Science and Technology, 2012, 23(1):305-311.
[12] 中国民用航空局. CCAR-25-R4运输类飞机适航标准[S]. 北京:中国民用航空局, 2011.
[13] 中国民用航空局. 中国民用航空发展第十二个五年规划[R]. 2011.
[14] BHARGAVA C, LOTH E, POTAPCZUK M. Numerical simulation of icing clouds in the NASA Glenn Icing Research Tunnel[J]. Journal of Aircraft, 2005, 42(6):1442-1451.
[15] MARK G, POTAPCZUK, MILLER D. Simulation of a bi-modal large droplet icing cloud in the NASA icing research tunnel[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005.
[16] ISAAC G A, AYERS J K, BAILEY M. First results from the alliance icing research study II[C]//43rd AIAA Aerospace Sciences Meeting, 2005:11-13.
[17] POKHARIYAL D, BRAGG M B, HULCHISON T, et al. Aircraft flight dynamics with simulated ice accretion:AIAA-2001-0541[R]. Reston:AIAA, 2001.
[18] BRAGG M B, BASAR T, PERKINS W R, et al. Smart icing systems for aircraft icing safety:AIAA-2002-0813[R]. Reston:AIAA, 2002.
[19] BRAGG M B, PEKINS W R, SARTER N B, et al. An interdisciplinary approach to inflight aircraft icing safety[J]. University of Illinois, 1998, 23(87):395-409.
[20] THOMPSON D, MOGILI P, CHALASANI S, et al. A computational icing effects study for a three-dimensional wing:Comparison with experimental data and investigation of spanwise variation[R]. Reston:AIAA, 2004.
[21] LEE S, BRAGG M B. Effects of simulated-spanwise-ice shapes on airfoils-Experimental investigation[C]//37th Aerospace Sciences Meeting and Exhibit. Reston:AIAA,1999:92.
[22] BRAGG M B, BROEREN A P, BLUMENTHAL L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5):323-418.
[23] PAPADAKIS M, GILE L B E, YOUSSEF G M, et al. Aerodynamic scaling experiments with simulated ice accretions[C]//39th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2001.
[24] HONSEK R, HABASHI W G, AUBE M S. Eulerian modeling of in-flight icing due to supercooled large droplets[J]. Journal of Aircraft, 2008, 45(4):1290-1296.
[25] LEE S, BRAGG M B. Experimental investigation of simulated Large-Droplet ice shapes on airfoil[J]. Journal of Aircraft, 1999, 36(5):844-850.
[26] BRAGG M B, BROEREN A P, ADDY H E, et al. Airfoil ice-accretion aerodynamics simulation:AIAA-2007-0085[R]. Reston:AIAA, 2007.
[27] ISAAC G A, AYERS J K, BAILEY M. First results from the alliance icing research study II:AIAA-2005-0252[R]. Reston:AIAA, 2005.
[28] WHALEN E, LEE S, BRAGG M B, et al. Characterizing the effect of icing on aircraft performance and control from flight data:AIAA-2002-0816[R]. Reston:AIAA, 2002.
[29] SHARMA V, VOULGARIS P G, FRAZZOLI E. Aircraft autopilot analysis and envelope protection for operation under icing conditions[J]. Journal of Guidance, Control and Dynamics, 2004, 27(3):454-465.
[30] 潘环, 艾剑良. 飞机结冰冰形预测的建模与仿真[J]. 系统仿真学报, 2014, 26(1):221-224. PAN H, AI J L. Modeling and simulation of aircraft ice shape prediction[J]. Journal of System Simulation, 2014, 26(1):221-224(in Chinese).
[31] 周莉, 徐浩军, 杨哲. 飞机在结冰条件下的最优边界保护方法[J]. 上海交通大学学报, 2013, 47(8):1217-1221. ZHOU L, XU H J, YANG Z. Optimal boundary protection method for aircraft under icing conditions[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8):1217-1221(in Chinese).
[32] 徐忠达, 苏媛, 曹义华. 平尾结冰对飞机纵向气动参数的影响[J]. 航空学报, 2013, 34(7):1563-1570. XU Z D, SU Y, CAO Y H. Effects of tailplane icing on aircraft longitudinal aerodynamic parameters[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1563-1570(in Chinese).
[33] 张强, 刘艳, 高正红. 结冰条件下的飞机飞行动力学仿真[J]. 飞行力学, 2011, 29(3):4-7. ZHANG Q, LIU Y, GAO Z H. Simulation of aircraft flight dynamics affected by ice accretion[J]. Flight Dynamics, 2011, 29(3):4-7(in Chinese).
[34] POTAPCZUK M G, AL-KHALIL K M, VELAZQUEZ M T. Ice accretion and performance degradation calculations with LEWICE/NS:AIAA-1993-0173[R]. Reston:AIAA, 1993.
[35] POTAPCZUK M G, BIDWELL C S. Numerical simulation of ice growth on a MS-317 swept wing geometry:AIAA-1991-0263[R]. Reston:AIAA, 1991.
[36] POTAPCZUK M G. LEWICE/E:An Euler based ice accretion code:AIAA-1992-0037[R]. Reston:AIAA, 1992.
[37] AMITABH S, GIRISH D, DEBASISH G. Synthesis of nonlinear controller to recover an unstable aircraft from post stall regime[J]. Journal of Guidance, Control and Dynamics, 1999, 22(5):710-717.
[38] 高浩, 周志强. 高机动性飞机大迎角全局稳定性研究[J]. 航空学报, 1987, 8(11):561-571 GAO H, ZHOU Z Q. A study of the global stability of high performance aircrafts at high angle-of-attack[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(11):561-571(in Chinese).
[39] 林国锋. 俯仰力矩曲线的"勺形"对飞机稳定性的影响[J]. 航空学报, 1990, 11(6):217-222. LIN G F. The effect of reversal slope of pitch moment curve to the stability of aircrafts[J]. Acta Aeronautica et Astronautica Sinica, 1990, 11(6):217-222(in Chinese).
[40] 黎康, 方振平. 基于全局稳定性分析的大迎角飞控系统设计[J]. 北京航空航天大学学报, 2004, 30(6):516-519 LI K, FANG Z P. High angle-of-attack control law design based on global stability analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(6):516-519(in Chinese).
[41] 张智勇. 结冰飞行动力学特性与包线保护控制律研究[D]. 南京:南京航空航天大学, 2006. ZHANG Z Y. Research on iced aircraft flight dynamics characteristics and envelope protection control law[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006(in Chinese).
[42] DETERS R W, DIMOCK G A, SELIG M S. Icing encounter flight simulator[J]. Journal of Aircraft, 2006, 43(5):1528-1537.
[43] 杨倩, 常士楠, 袁修干. 水滴撞击特性的数值计算方法研究[J]. 航空学报, 2002, 23(2):173-176. YANG Q, CHANG S N, YUAN X G. Study on numerical method for determining the droplet trajectories[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(2):173-176(in Chinese).
[44] GINGRAS D R, BARNHART B, RANAUDO R, et al. Envelope protection for in-flight ice contamination:NASA/TM-2010-216072[R]. Washington, D.C.:NASA, 2010.
[45] 李殿璞. 非线性控制系统[M]. 西安:西北工业大学出版社, 2009. Li D P. Nonlinear control system[M]. Xi'an:Northwestern Polytechnical University Press, 2009(in Chinese).
[46] PAPADAKIS M, YEONG H W, SHIMOI K, et al. Ice shedding experiments with simulated ice shapes:AIAA-2009-3972[R]. Reston:AIAA, 2009.
[47] BRAGG M B, GREGOREK G M. Aerodynamic characteristics of airfoils with ice accretions[C]//AIAA 20th Aerospace Sciences Meeting, 1992.
[48] VARGAS M. Current experimental basis for modeling ice accretions on swept wings[J]. Journal of Aircraft, 2007, 44(1):274-290.
[49] HOSSAIN K N, SHARA V, BRAGG M B, et al. Envelope protection and control adaptation in icing encounters:AIAA-2003-0025[R]. Reston:AIAA, 2003.
[50] BROEREN A P, RILEY J T. Scaling of lift degradation due to anti-icing fluids based upon the aerodynamic acceptance test:NASA/TM-2012-217701[R]. Washington, D.C.:NASA, 2012.
[51] THOMAS P R, BILLY P B, LEE S. Current methods modeling and simulating icing effects on aircraft performance, stability, control[J]. Journal of Aircraft, 2010, 47(1):201-211.
[52] LEE S, KIM H S, BRAGG M B. Investigation of factors that influence iced-airfoil aerodynamics[C]//38th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2000.
[53] BRAGG M B, HUTCHISON T, OLTMAN R, et al. Effect of ice accretion on aircraft flight dynamics:AIAA-2000-0360[R]. Reston:AIAA, 2000.
[54] RATVASKY T P, BLANKENSHIP K, RIEKE W, et al. Iced aircraft flight data for flight simulator validation:NASA TM-2003-212114[R]. Washington, D.C.:NASA, 2003.
[55] 应思斌, 艾剑良. 飞机结冰包线保护对开环飞行性能影响与仿真[J]. 系统仿真学报, 2010, 22(10):2273-2275. YING S B, AI J L. Simulation of aircraft flight envelope protection icing encounters effects on open loop dynamic[J]. Journal of System Simulation, 2010, 22(10):2273-2276(in Chinese).
[56] 袁坤刚, 曹义华. 结冰对飞机飞行动力学特性影响的仿真研究[J]. 系统仿真学报, 2007, 19(9):1929-1932. YUAN K G, CAO Y H. Simulation of ice effect on aircraft flight dynamics[J]. Journal of System Simulation, 2007, 19(9):1929-1932(in Chinese).
[57] 张强, 曹义华, 潘星. 积冰对飞机飞行性能的影响[J]. 北京航空航天大学学报, 2006, 32(6):654-657. ZHANG Q, CAO Y H, PAN X. Effect of ice accretion on aircraft flight performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(6):654-657(in Chinese).
[58] LEE S, BARNHAR B P, RATVASKY T P, et al. Dynamic wind-tunnel testing of a sub-scale iced business jet:AIAA-2006-0261[R]. Reston:AIAA, 2006.
[59] BRAGG M B, GREGOREK G M. Aerodynamic characteristics of airfoils with ice accretions[C]//20th AIAA Aerospace Sciences Meeting, 1992.
[60] RUFF G A. Quantitative comparison of ice accretion shapes on airfoils[J]. Journal of Aircraft, 2002, 39(3):418-426.
[61] ANDERSON D N. Further evaluation of traditional icing scaling methods:AIAA-1996-0633[R]. Reston:AIAA, 1996.
[62] 周志宏, 易贤, 郭龙, 等. 基于云雾参数误差的结冰外形修正方法[J]. 实验流体力学, 2016, 30(3):8-13. ZHOU Z H, YI X, GUO L, et al. Ice shape correction method based on cloud parameters[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3):8-13(in Chinese).
[63] 周莉, 徐浩军. 飞机结冰特性及防除冰技术研究[J]. 中国安全科学学报, 2010, 20(6):105-109. ZHOU L, XU H J. Research of aircraft icing characteristics and anti-icing and de-icing technology[J]. China Safety Science Journal, 2010, 20(6):105-109(in Chinese).
[64] MILLER D, LYNEH C J, TATE P A. Overview of high speed close-up imaging in an icing environment:AIAA-2004-0407[R]. Reston:AIAA, 2004.
[65] LEE S, KIM H S, BRAGG M B. Investigation of factors that influence iced-airfoil aerodynamics:AIAA-2000-0099[R]. Reston:AIAA, 2000.
[66] CLAFFEY K J, JONES K F, RYERSON C C. Use and calibration of rosemount ice detectors for meteorological research[J]. Atmospheric Research, 1995(36):277-286.
[67] IKIADES A A. Direct ice detection based on fiber optic sensor architecture[J]. Applied Physics Letters, 2007, 91(10):1-3.
[68] 张杰, 周磊, 张洪, 等. 飞机结冰探测技术[J]. 仪器仪表学报, 2006, 27(12):1578-1586. ZHANG J, ZHOU L, ZHANG H, et al. Aircraft icing detection technology[J]. Chinese Journal of Scientific Instrument, 2006, 27(12):1578-1586(in Chinese).
[69] IKIADES A A, ARMST RONG D J, HARE G G, et al. Fibre optic sensor technology for air conformal ice detection[J]. Industrial and Highway Sensors Technology, Proceedings of SPIE, 2004, 5272:357-368.
[70] AMANDA L, JOHN V. Prediction of icing effects on the coupled dynamic response of light airplanes[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3):656-673.
[71] THOMAS P R, BILLY P B, LEE S. Current methods modeling and simulating icing effects on aircraft performance, stability, control[J]. Journal of Aircraft, 2010, 47(1):201-211.
[72] THOMAS P R. Demonstration of an ice contamination effects flight training device:AIAA-2006-0677[R]. Reston:AIAA, 2006.
[73] XU H J, LIU D L, XUE Y. Airworthiness compliance verification method based on simulation of complex system[J]. Chinese Journal of Aeronautics, 2012, 25(5):681-690.
[74] YI X, WANG K C, GUI Y W. Study on Eulerian method for icing collection efficiency computation and its application[J]. Acta Aerodynamica Sinica, 2010, 28(5):596-601.

Outlines

/