Special Column of Aviation Guided Weapons

Nonlinear stability region of icing aircraft during landing phase based on normal form method

  • ZHENG Wuji ,
  • LI Yinghui ,
  • QU Liang ,
  • XU Haojun ,
  • YUAN Guoqiang
Expand
  • Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi'an 710038, China

Received date: 2016-08-25

  Revised date: 2016-10-25

  Online published: 2016-11-03

Supported by

National Natural Science Foundation of China (61374145); National Basic Research Program of China (2015CB755805)

Abstract

Icing can cause flight envelope shrink and thus poses a great threat to flight safety; therefore, research on nonlinear stability region of an aircraft after icing is significantly important for the design of flight envelope protection system and the improvement flight safety. A transport is taken as an object of this study. Taking the nonlinear aerodynamic characteristics into account, the longitudinal nonlinear dynamic model with stability augmentation control is obtained. Based on the theory of manifold and normal form, the longitudinal nonlinear stability boundary and its analytic expression are obtained. Via dynamic simulation, the stability boundary based on normal form is justified to be feasible and accurate. Finally, icing factor impacting on aircraft stability region and the mechanism for accidents of an icing aircraft is studied at the landing phase. Results show that mild icing condition can cause the shrink of nonlinear stability region, while severe icing condition can change the aircraft stability. When icing of an aircraft is not detected, regular manipulation can result in flight accident as the aircraft state can be out of the icing nonlinear stability region. The results can provide some reference for flight envelope protection under icing condition.

Cite this article

ZHENG Wuji , LI Yinghui , QU Liang , XU Haojun , YUAN Guoqiang . Nonlinear stability region of icing aircraft during landing phase based on normal form method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(2) : 520714 -520724 . DOI: 10.7527/S1000-6893.2016.0279

References

[1] 屈亮, 李颖晖, 袁国强, 等. 基于相平面法的结冰飞机纵向非线性稳定域分析[J]. 航空学报, 2016, 37(3):865-872. QU L, LI Y H, YUAN G Q, et al. Longitudinal nonlinear stabilizing region for icing aircraft based on phase-plane method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):865-872(in Chinese).
[2] HILTNER D W. A nonlinear aircraft simulation of ice contaminated tailplane stall[D]. Columbus:Ohio State University, 1998.
[3] Safety Advisor. Aircraft icing[EB/OL]. (2013-05-01)[2015-05-08]. http://www.aopa.org_media/-Files/AOPA/Home/Pilot%20Resources/ASI/Safety%20Advisors/sall.pdf.
[4] HAROLD E. ADDY J R. Ice Accretions and icing effects for modern airfoils:NASA/TP-2000-210031[R]. Wa-shington, D.C:NASA, 2000.
[5] MILLER R, RIBEENS W. The Effects of icing on the longitudinal dynamics of an icing research aircraft:AIAA-1999-0636[R]. Reston:AIAA, 1999.
[6] BRAGG M B, HUTCHISON T, MERRET J, et al. Effect of ice accretion on aircraft flight dynamic:AIAA-2000-0360[R]. Reston:AIAA, 2000.
[7] 裘燮纲, 韩凤华. 飞机防冰系统[M]. 北京:航空专业教程编审组, 1985. QIU X G, HAN F H. Aircraft anti-icing system[M]. Beijing:Aviation Professional Editors Publishing Group, 1985(in Chinese).
[8] 王明丰, 王立新, 黄成涛. 积冰对飞机纵向操稳特性的量化影响[J]. 北京航空航天大学学报, 2008, 34(5):592-595. WANG M F, WANG L X, HUANG C T. Computational effects of ice accretion on aircraft longitudinal stability and control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(5):592-595(in Chinese).
[9] 徐忠达, 苏媛, 曹义华. 积冰对飞机操纵性的影响与仿真[J]. 北京航空航天大学学报, 2012, 38(7):941-946. XU Z D, SU Y, CAO Y H. Simulation of ice effects on aircraft controllability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7):941-946(in Chinese).
[10] 周莉, 徐浩军, 杨哲. 飞机在结冰条件下的最优边界保护方法[J]. 上海交通大学学报, 2013, 47(8):1217-1221. ZHOU L, XU H J, YANG Z. Optimal boundary protection method for aircraft under icing conditions[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8):1217-1221(in Chinese).
[11] POKHARIYAL D, BRAGG M B, HUTCHISON T, et al. Aircraft flight dynamics with simulated ice accretion:AIAA-2001-0541[R]. Reston:AIAA, 2001.
[12] 高浩, 周志强. 高机动飞机迎角全局稳定性研究[J]. 航空学报, 1987, 8(11):562-571. GAO H, ZHOU Z Q. A study of the global stability of high performance aircrafts at high angle-of-attack[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(11):562-571(in Chinese).
[13] 何植岱, 郭文. 非线性飞行稳定性研究的新综合方法[J]. 空气动力学学报, 1990, 8(2):143-151. HE Z D, GUO W. A novel synthetical method for study nonlinear flight stability[J]. Acta Aerodynamics Sinica, 1990, 8(2):143-151(in Chinese).
[14] ROBERT C, ALLEN, HARRY G K. Safe set protection and restoration for unimpaired and impaired aircraft:AIAA-2012-4822[R]. Reston:AIAA, 2012.
[15] 王爽, 詹浩. 飞行最大可控边界集及其机动边界保护控制[J]. 西北工业大学学报, 2014, 32(4):523-528. WANG S, ZHAN H. The safe-set of aircraft and maneuverability envelope protection[J]. Journal of Northwestern Polytechnical University, 2014, 32(4):523-528(in Chinese).
[16] 李颖晖, 张保会, 李勐. 电力系统稳定边界的研究[J]. 中国电机工程学报, 2002, 22(3):72-77. LI Y H, ZHANG B H, LI M. Study on electrical power system stability boundary[J]. Proceedings of the CSEE, 2002, 22(3):72-77(in Chinese).
[17] SAHA S, FOUAD A A, KLIEMANN W H, et al. Stability boundary approximation of a power system using the real normal form of vector fields[J]. IEEE Transactions on Power Systems, 1997, 12(2):797-802.
[18] CHIANGH D, HIRSCH M W, WU F F. Stability region of nonlinear autonomous dynamical system[J]. IEEE Transactions on Automatic Control, 1988, 33(1):16-27.
[19] CHIANG H D, JAMES S, THORP. Stability regions of nonlinear dynamical system:A constructive methodology[J]. IEEE Transactions on Automatic Control, 1988, 34(12):1229-1241.
[20] WANG D. Anintroduction to the normal form theory of ordinary differential equation[J]. Advances in Mathematic, 1990, 86(1):38-71.
[21] 李颖晖, 张保会. 正规形理论在电力系统稳定性研究中的应用(二)——电力系统主导不稳定平衡点上局部流形的计算[J]. 电力自动化设备, 2003, 23(7):1-4. LI Y H, ZHANG B H. Application of normal form in study of power system stability part 2:Calculation of local manifolds on controlling unstable equilibrium point of electric power system[J]. Electric Power Automation Equipment, 2003, 23(7):1-4(in Chinese).

Outlines

/