ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Effects of aided ice layer on electrochemical discharge drilling
Received date: 2016-07-27
Revised date: 2016-09-12
Online published: 2016-10-19
Supported by
National Natural Science Foundation of China (51475237);National High-tech Research and Development Program of China (2013AA040101)
The processing method of electrochemical discharge drilling (ECDD) is expected to achieve high efficiency machining of the difficult-to-machine material of film cooling holes without recast layer on turbine blade. In order to further improve the machining quality of hole walls, a new processing method of ECDD with ice layer filled at the bottom of the workpiece is proposed. The effects of ice layer on current and voltage waveform between tool electrode and workpiece electrode, machining efficiency, the diameter of the entrance and exit, and removal of recast layer on hole walls are analyzed. Contrast experiments between ECDD with aided ice layer and ECDD without aided ice layer are conducted. Experiment results show that the aided ice layer can help to form sufficient reverse flushing of working fluid and effectively solve the problem of working fluid leakage after penetration. After penetration of small holes, the tube electrode stays for a few seconds at the predetermined depth to increase the electrochemical dissolution time, so that the ECDD with aided ice layer can enhance the removal effect of recast layer, and is expected to achieve complete removal of entire recast layer of the wall of small holes.
DING Fei , XU Zhengyang , WANG Feng , ZHANG Yan . Effects of aided ice layer on electrochemical discharge drilling[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(5) : 420643 -420643 . DOI: 10.7527/S1000-6893.2016.0256
[1] 朱海南, 齐歆霞. 涡轮叶片气膜孔加工技术及其发展[J]. 航空制造技术, 2011(13):71-74. ZHU H N, QI X X. Development of machining technology gas holes on turbine blades[J]. Aeronautical Manufacturing Technology, 2011(13):71-74 (in Chinese).
[2] 梁洁萍, 周知进. 微小孔加工与微细钻头[J]. 湘潭师范学院学报(自然科学版), 2004, 26(4):56-58. LIANG J P, ZHOU Z J. Machining on microvoid and micro-drill[J]. Journal of Xiangtan Normal University (Natural Science Edition), 2004, 26(4):56-58 (in Chinese).
[3] 应人龙, 曾莉群, 顾大强. 微小孔加工技术综述[J]. 机床与液压, 2008, 36(6):144-148. YING R L, ZENG L Q, GU D Q. Review of micro-hole machining technology[J]. Machine Tool & Hydraulics, 2008, 36(6):144-148 (in Chinese).
[4] 施文轩, 张明歧, 殷旻, 等. 电射流加工工艺研究和发展[J]. 电加工与模具, 2001(1):36-39. SHI W X, ZHANG M Q, YIN M, et al. Investigation and development of the electro-stream technology[J]. Electromachining & Mould, 2001(1):36-39 (in Chinese).
[5] KUNIEDA M, MIZUGAI K, WATANABE S, et al. Electrochemical micromachining using flat electrolyte jet[J]. CIRP Annals-Manufacturing Technology, 2011, 60(1):251-254.
[6] 段文强, 王恪典, 董霞, 等. 激光旋切法加工高质量微小孔工艺与理论研究[J]. 西安交通大学学报, 2015, 49(3):95-103. DUAN W Q, WANG K D, DONG X, et al. Study on machining of high-quality micro-holes by laser trepan drilling[J]. Journal of Xi'an Jiaotong University, 2015, 49(3):95-103 (in Chinese).
[7] MASUZAWA T. Machining characteristics of EDM using water as dielectric fluid[C]//The 22nd International Machine Tool Design and Research (MTDR) Conference. Manchester:University of Manchester Institute of Science and Technology, 1981:441-447.
[8] MASUZAWA T, KUO C L, FUJINO M. A combined electrical machining process for micronozzle fabrication[J]. CIRP Annals-Manufacturing Technology, 1994, 43(1):189-192.
[9] CHUNG D K, SHIN H S, KIM B H, et al. Surface finishing of micro-EDM holes using deionized water[J]. Journal of Micromechanics and Microengineering, 2009, 19(4):1-7.
[10] HUNG J C, YAN B H, LIU H S, et al. Micro-hole machining using micro-EDM combined with electropolishing[J]. Journal of Micromechanics and Microengineering, 2006, 16(8):1480-1486.
[11] NGUYEN M D, RAHMAN M, WONG Y S. Transitions of micro-EDM/SEDCM/micro-ECM milling in low-resistivity deionized water[J]. International Journal of Machine Tools and Manufacture, 2013, 69:48-56.
[12] NGUYEN M D,RAHMAN M,WONG Y S. Simultaneous micro-EDM and micro-ECM in low-resistivity deionized water[J]. International Journal of Machine Tools and Manufacture, 2012, 54-55:55-65.
[13] ZHANG Y, XU Z Y, ZHU D, et al. Tube electrode high-speed electrochemical discharge drilling using low-conductivity salt solution[J]. International Journal of Machine Tools and Manufacture, 2015, 92:10-18.
[14] ZHANG Y, XU Z Y, ZHU D, et al. Drilling of film cooling holes by a EDM/ECM in situ combined process using internal and side flushing of tubular electrode[J]. International Journal of Advanced Manufacturing Technology, 2016, 83(1-4):505-517.
[15] 张建华, 张勤河, 贾志新, 等. 复合加工[M]. 北京:化学工业出版社, 2015:154-155. ZHANG J H, ZHANG Q H, JIA Z X, et al. Combined machining[M]. Beijing:Chemical Industry Press, 2015:154-155 (in Chinese).
[16] 朱云. 微小孔电火花-电解复合加工穿透检测及实验研究[D]. 南京:南京航空航天大学, 2016:1-18. ZHUN Y. Penetration detection and experiments of EDM&ECM hybrid machining for micro-hole[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016:1-18 (in Chinese).
[17] 朱荻, 张彦, 徐正扬, 等. 基于低温环境的冰冻辅助微小孔加工方法及装置:CN104801801A[P]. 2015-07-29. ZHU D, ZHANG Y, XU Z Y, et al. Device and method for machining micro-holes under low temperature with aided ice:CN104801801A[P]. 2015-07-29 (in Chinese).
[18] 徐家文, 云乃彰, 王建业, 等. 电化学加工技术[M]. 北京:国防工业出版社, 2008:6-35. XU J W, YUN N Z, WANG J Y, et al. Electrochemical machining technique[M]. Beijing:National Defense Industry Press, 2008:6-35 (in Chinese).
[19] 赵万生. 先进电火花加工技术[M]. 北京:国防工业出版社, 2003:13-20. ZHANG W S. Advanced electrical discharge machining technology[M]. Beijing:National Defense Industry Press, 2003:13-20 (in Chinese).
[20] 王振龙, 赵万生. 微细电火花加工中电极材料的蚀除机理研究[J]. 机械科学与技术, 2002, 21(1):124-126. WANG Z L, ZHANG W S. Research on the erosion process of electrode materials in micro-EDM[J]. Mechanical Science and Technology, 2002, 21(1):124-126 (in Chinese).
/
〈 | 〉 |