ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Design on variable section inward turning inlet with controlled horizontal projection of intake curve
Received date: 2016-07-25
Revised date: 2016-09-21
Online published: 2016-10-10
Supported by
National Natural Science Foundation of China (90916029)
A design method is developed for three-dimensional variable section inward turning inlet with controlled horizontal projection of intake curve. Based on the basic flowfield with arc tangent Mach number distribution, the inward turning inlet with smooth shape transition from an elliptical horizontal projection of intake curve to a circular exit is designed utilizing streamline tracing and shape transition techniques. Numerical simulation is conducted at the design point (Mai=5.4) and the relay point (Mai=4.0). The results indicate that the inlet is of the major features of the basic flowfield, and 98% free incoming flow at the design point can be captured under the inviscid condition. The performance of the throat plane is close to the basic flowfield. In comparison with the inlet of elliptical intake, the variable section inlet with elliptical-to-circular transition has similar flowfield structure and slightly lower performance. Under the viscous condition, the total pressure recovery coefficient of the throat plane reduces 2.9% and 1.2% at the design point and the relay point, respectively. In addition, the inlet has high overall performance, and the flow coefficient reaches 0.82 at the relay point.
LI Yongzhou , SUN Di , ZHANG Kunyuan , GUO Shiliang . Design on variable section inward turning inlet with controlled horizontal projection of intake curve[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(5) : 120640 -120640 . DOI: 10.7527/S1000-6893.2016.0270
[1] ZHANG L, ZHANG K Y, WANG L. Experimental study of three-dimensional sidewall compression inlet designed on wall Mach number linear distribution curved surface compression system:AIAA-2015-3669[R]. Reston:AIAA, 2015.
[2] LI Y Q, YOU Y C, HAN W Q, et al. An innovative integration concept for forebody and two-dimensional hypersonic inlet with controllable wall pressure distribution:AIAA-2015-3592[R]. Reston:AIAA, 2015.
[3] BILLIG F S, JACOBSEN L S. Comparison of planar and axisymmetric flow paths for hydrogen fueled space access vehicle:AIAA-2003-4407[R]. Reston:AIAA, 2003.
[4] YOU Y C. An overview of the advantages and concerns of hypersonic inward turning inlets:AIAA-2011-2269[R]. Reston:AIAA, 2011.
[5] ZHANG K Y. Research progress of hypersonic inlet inverse design based on curved shock compression system:AIAA-2015-3647[R]. Reston:AIAA, 2015.
[6] 朱呈祥, 黄国平, 尤延铖, 等. 内乘波式进气道与典型侧压式进气道的性能对比[J]. 推进技术, 2011, 32(2):151-158. ZHU C X, HUANG G P, YOU Y C, et al. Performance comparison between internal waverider inlet and typical sidewall compression inlet[J]. Journal of Propulsion Technology, 2011, 32(2):151-158 (in Chinese).
[7] MÖLDER S, SZPIRO J. Busemman inlet for hypersonic speeds[J]. Journal of Spacecraft and Rockets, 1966, 3(8):1303-1304.
[8] OTTO S E, TREFNY C J, SLATER J W. Inward turning streamline-traced inlet design method for low-boom, low-drag applications:AIAA-2015-3700[R]. Reston:AIAA, 2015.
[9] SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Power and Propulsion, 1999, 15(3):408-416.
[10] YANG S H, LIU W X, LE J L, et al. Experimental testing of a hypersonic inward turning inlet with water-drop like shape to circular shape transition:AIAA-2015-3620[R]. Reston:AIAA, 2015.
[11] MATTHEWS A J, JONES T V. Design and test of a modular waverider hypersonic intake[J]. Journal of Propulsion and Power, 2006, 22(4):913-920.
[12] DRAYNA T W, NOMPELIS I, CANDLER G V. Hypersonic inward turning inlets:design and optimization:AIAA-2006-0297[R]. Reston:AIAA, 2006.
[13] 尤延铖, 梁德旺. 基于内乘波概念的三维变截面高超声速进气道[J]. 中国科学E辑, 2009, 39(8):1483-1494. YOU Y C, LIANG D W. Design concept of three dimensional section controllable internal waverider hypersonic inlet[J]. Science China Series E, 2009, 39(8):1483-1494 (in Chinese).
[14] YUE L J, XIAO Y B, CHEN L H, et al. Design of base flow for streamline-traced hypersonic inlet:AIAA-2009-7422[R]. Reston:AIAA, 2009.
[15] 贺旭照, 周正, 倪鸿礼. 密切内锥乘波前体进气道体化设计和性能分析[J]. 推进技术, 2012, 33(4):510-515. HE X Z, ZHOU Z, NI H L. Integrated designmethods and performance analysis of osculating inward turning cone waverider forebody inlet[J]. Journal of Propulsion and Power, 2012, 33(4):510-515 (in Chinese).
[16] 郭军亮, 黄国平, 尤延铖, 等. 改善内乘波式进气道出口均匀性的内收缩基本流场研究[J]. 宇航学报, 2009, 30(5):1934-1940. GUO J L, HUANG G P, YOU Y C, et al. Study of internal compression flow field for improving the outflow uniformity of internal wave rider inlet[J]. Journal of Astronautics, 2009, 30(5):1934-1940 (in Chinese).
[17] SABEAN J W, LEWIS M J. Computational optimization of a hypersonic rectangular-to-circular inlet[J]. Journal of Propulsion and Power, 2001, 17(3):571-578.
[18] 南向军, 张堃元, 金志光, 等. 矩形转圆形高超声速内收缩进气道数值及实验研究[J]. 航空学报, 2011, 32(6):988-996. NAN X J, ZHANG K Y, JIN Z G, et al. Numerical and experimental investigation of hypersonic inward turning inlets with rectangular to circular shape transition[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):988-996 (in Chinese).
[19] 李永洲, 张堃元, 南向军. 基于马赫数分布规律可控概念的高超声速内收缩进气道设计[J]. 航空动力学报, 2012, 27(11):2484-2491. LI Y Z, ZHANG K Y, NAN X J. Design concept of controllable Mach number distribution hypersonic inward turning inlets[J]. Journal of Aerospace Power, 2012, 27(11):2484-2491 (in Chinese).
[20] 李永洲, 张堃元, 朱伟, 等. 双弯曲入射激波的可控中心体内收缩基准流场设计[J]. 航空动力学报, 2015, 30(3):563-570. LI Y Z, ZHANG K Y, ZHU W, et al. Design for inward turning basic flowfield withbody and two incident curved shock controlled center waves[J]. Journal of Aerospace Power, 2015, 30(3):563-570 (in Chinese).
[21] MALO-MOLINA F J, GAITONDE D V, EBRAHIMI H B. Numerical investigation of a 3-D chemically reacting scramjet engineat high altitudes using JP8-air mixtures:AIAA-2005-1435[R]. Reston:AIAA, 2005.
[22] XIAO Y B, YUE L J, CHEN L H, et al. Iso-contraction-ratio methodology for the design of hypersonic inward turning inlets with shape transition:AIAA-2012-5978[R]. Reston:AIAA, 2012.
[23] WALKER S H, TANG M, MORRIS S, et al. Falcon HTV-3X -a reusable hypersonic test bed:AIAA-2008-2544[R]. Reston:AIAA, 2008.
[24] 南向军, 张堃元, 金志光. 乘波前体两侧高超声速内收缩进气道一体化设计[J]. 航空学报, 2012, 33(8):1417-1426. NAN X J, ZHANG K Y, JIN Z G. Integrated design of waverider forebody and lateral hypersonic inward turning inlets[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1417-1426 (in Chinese).
[25] TAYLOR T, VANWIE D. Performance analysis of hypersonic shape-changing inlets derived from morphing streamline traced flowpaths:AIAA-2008-2635[R]. Reston:AIAA, 2008.
[26] 王翼. 高超声速进气道启动问题研究[D]. 长沙:国防科学技术大学, 2008:27-30. WANG Y. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha:National University of Defense Technology, 2008:27-30 (in Chinese).
/
〈 | 〉 |