ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Lunar module trans-lunar window searching approach for manned lunar mission
Received date: 2016-06-30
Revised date: 2016-09-26
Online published: 2016-10-08
Supported by
National Natural Science Foundation of China (11372345, 11402295); National Basic Research Program of China (2013CB733100)
An accurate and rapid approach to lunar module (LM) trans-lunar injection (TLI) window and orbit parameter design is derived for manned lunar landing mission based on low lunar orbit coplanar rendezvous and docking (RVD). The pattern that astronauts are separated from cargo is adopted. LM arrives at the lunar coplanar RVD orbit earlier than the crew exploration vehicle (CEV). LM completes the braking on the LLO RVD plane with only one impulse at perilune. A strategy of three-level cascade searching for LM TLI windows is proposed. The month window and orbital initial parameters of TLI are obtained in the first level. Further initial solution for month window and orbital parameters are obtained with an improved double two-body analytic model in the second level. The high precision dynamics solution for zero window and orbital parameters are optimized by SQP_Snopt algorithm. Simulation results show that the rapid and accurate three-level cascade searching approach for LM TLI windows and orbital parameters is effective for manned lunar landing mission. The influential factors and fundamental patterns of TLI window are revealed to supply references to China's manned lunar landing mission in the future.
HE Boyong , LI Haiyang . Lunar module trans-lunar window searching approach for manned lunar mission[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(4) : 320574 -320574 . DOI: 10.7527/S1000-6893.2016.0261
[1] COLAPRETE A, SCHULTZ P, HELDMANN J, et al. Detection of water in the LCROSS ejecta plume[J]. Science, 2010, 330(6003):463-468.
[2] MITROFANOV I G, SANIN A B, BOYNTON W V, et al. Hydrogen mapping of the lunar south pole using the LRO neutron detector experiment LEND[J]. Science, 2010, 330(6003):483-486.
[3] WU W R, LIU W W, QIAO D, et al. Investigation on the development of deep space exploration[J]. Science China:Technological Sciences, 2012, 55(4):1086-1091.
[4] 李桢, 周建平, 程文科, 等. 环月轨道交会的奔月方案[J]. 国防科技大学学报, 2009, 31(1):16-20. LI Z, ZHOU J P, CHENG W K, et al. Investigation on lunar mission based on lunar orbit rendezvous[J]. Journal of National University of Defense Technology, 2009, 31(1):16-20 (in Chinese).
[5] 周建平. 载人航天交会对接技术[J]. 载人航天, 2011, 17(2):1-8. ZHOU J P. Rendezvous and docking technology of manned space flight[J]. Manned Spaceflight, 2011, 17(2):1-8 (in Chinese).
[6] 郑爱武, 周建平. 载人登月轨道设计方法及其约束条件概述[J]. 载人航天, 2012, 18(1):48-54. ZHENG A W, ZHOU J P. A survey on trajectory design and constrains of manned lunar landing missions[J]. Manned Spaceflight, 2012, 18(1):48-54 (in Chinese).
[7] 郑爱武, 周建平. 直接再入大气的月地返回窗口搜索策略[J]. 航空学报, 2014, 35(8):2243-2250. ZHENG A W, ZHOU J P. A search strategy of back windows for moon-to-earth trajectories directly re-turning to the earth[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2243-2250 (in Chinese).
[8] 周文艳, 杨维廉. 嫦娥二号卫星轨道设计[J]. 航天器工程, 2010, 19(5):24-28. ZHOU W Y, YANG W L. Orbit design for Chang'e-2 lunar orbiter[J]. Spacecraft Engineering, 2010, 19(5):24-28 (in Chinese).
[9] PENG Q B, SHEN H X, LI H Y. Free return orbit de-sign and characteristics analysis for manned lunar mission[J]. Science China:Technological Sciences, 2011, 54(12):3243-3250.
[10] SHEN H X, ZHOU J P, PENG Q B, et al. Point return orbit design and characteristics analysis for manned lunar mission[J]. Science China:Technological Sciences, 2012, 55(9):2561-2569.
[11] LI J Y, GONG S P, WANG X. Launch window for manned moon-to-earth trajectories[J]. Aircraft Engineering and Aerospace Technology, 2012, 84(5):344-356.
[12] 贺波勇, 沈红新, 李海阳. 地月转移轨道设计的改进微分校正方法[J]. 国防科技大学学报, 2014, 36(6):60-64. HE B Y, SHEN H X, LI H Y. An improved differential correction method for trans-lunar orbit design[J]. Journal of National University of Defense Technology, 2014, 36(6):60-64 (in Chinese).
[13] 张洪礼, 罗钦钦, 韩潮, 等. UKF参数估计在三体Lambert问题中的应用[J]. 北京航空航天大学学报, 2015, 41(2):228-233. ZHANG H L, LUO Q Q, HAN C, et al. Application of UKF parameter estimation in the three-body Lambert problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2):228-233 (in Chinese).
[14] 罗钦钦, 韩潮. 包含引力辅助变轨的三体Lambert 问题求解算法[J]. 北京航空航天大学学报, 2013, 39(5):679-682. LUO Q Q, HAN C. Solution algorithm of the three body Lambert problem with gravity assist maneuver[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5):679-682 (in Chinese).
[15] PHILIP E G, MURRAY W, SAUNDERS M A. SNOPT:An SQP algorithm for large-scale constrained optimization[J]. SIAM Journal on Optimization, 2002, 12(4):979-1006.
[16] CONDON G. Lunar orbit insertion targeting and associated outbound mission design for lunar sortie missions:AIAA-2007-6680[R]. Reston:AIAA, 2007.
[17] 贺波勇, 彭祺擘, 沈红新, 等. 载人登月轨道月面可达区域分析[J]. 载人航天, 2014, 20(4):290-295. HE B Y, PENG Q B, SHEN H X, et al. Reachable region analysis of orbits for manned lunar landing mission[J]. Manned Spaceflight, 2014, 20(4):290-295 (in Chinese).
[18] 沈红新, 李海阳, 彭祺擘, 等. 探月飞行器定点返回轨迹特性分析[J]. 国防科技大学学报, 2011, 33(4):6-11. SHEN H X, LI H Y, PENG Q B, et al. Point return trajectory characteristics analysis for a lunar spacecraft[J]. Journal of National University of Defense Technology, 2011, 33(4):6-11 (in Chinese).
[19] 贺波勇, 李海阳, 周建平. 载人登月绕月自由返回轨道与窗口精确快速设计[J]. 宇航学报, 2016, 37(5):512-518. HE B Y, LI H Y, ZHOU J P. Rapid design of circumlunar free-return high accuracy trajectory and trans-lunar window for manned lunar landing mission[J]. Journal of Astronautics, 2016, 37(5):512-518 (in Chinese).
[20] 贺波勇. 载人登月转移轨道偏差传播分析与中途修正方法研究[D]. 长沙:国防科学技术大学,2013. HE B Y. Analysis of transfer orbit deviation propagation and mid-course correction for manned lunar landing[D]. Changsha:National University of Defense Technology, 2013 (in Chinese).
[21] 郗晓宁, 曾国强, 任萱, 等. 月球探测器轨道设计[M]. 北京:国防工业出版社, 2001:53-58. XI X N, ZENG G Q, REN X, et al. Orbit design of lunar probe[M]. Beijing:National Industry Press, 2001:53-58 (in Chinese).
/
〈 | 〉 |