Electronics and Electrical Engineering and Control

Influence of platform swaying on accuracy of Kalman filter tracking

  • CHENG Han ,
  • CHEN Weiyi ,
  • XIE Zhiliang
Expand
  • Department of Weapon Engineering, Naval University of Engineering, Wuhan 430033, China

Received date: 2016-07-06

  Revised date: 2016-09-05

  Online published: 2016-09-20

Abstract

The model for the target relative movement coordinate system and movement tracking is built to study the influence of platform swaying on the target's movement status captured by the tracking system. Base on the theory of strapdown vertical datum system compensating, the compensating model for the swaying angle is developed. The compensating model is applicable for the strapdown vertical datum system after theoretical derivation of the compensating algorithm. The influence on accuracy of Kalman filter tracking of platform swaying is analyzed by contrasting the difference between different tracking modes of compensating. The main influence on the accuracy of Kalman filter tracking under the condition of platform swaying is figured out to be the increase of model error, which may cause the divergence of the filter. The simulation model is built to prove the correctness of the conclusion, and the simulation result can provide theoretical reference for improving the ship-based tracking theory.

Cite this article

CHENG Han , CHEN Weiyi , XIE Zhiliang . Influence of platform swaying on accuracy of Kalman filter tracking[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(6) : 320589 -320589 . DOI: 10.7527/S1000-6893.2016.0249

References

[1] 杨永健, 樊晓光, 王晟达, 等. 基于修正卡尔曼滤波的目标跟踪[J]. 系统工程与电子技术, 2014, 36(5): 846-851. YANG Y J, FAN X G, WANG S D, et al. Target tracking based on amendatory Kalman filter[J]. System Engineering and Electronics, 2014, 36(5): 846-851(in Chinese).
[2] 余戌瞳, 吴玲, 卢发兴. 舰艇摇摆下射界动态变化对武器目标分配的影响[J]. 兵工学报, 2015, 36(9): 1819-1824. YU X T, WU L, LU F X. The influence of dynamically changing firing zone on weapon-target assignment under ship swaying[J]. Acta Armamentarii, 2015, 36(9): 1819-1824 (in Chinese).
[3] 刘玉洲. 舰艇摇摆对雷达侧向精度及工作方式的影响[J]. 舰船电子对抗, 2002, 25(2): 18-21. LIU Y Z. The influence on working mode of radar direction accuracy from ship swaying[J]. Shipboard Electronic Countermeasure, 2002, 25(2): 18-21 (in Chinese).
[4] 窦林涛, 初阳, 程建庆. 舰载雷达系统误差建模仿真分析[J]. 系统仿真学报, 2013, 25(4): 188-192. DOU L T, CHU Y, CHENG J Q. Modeling and simulation analysis of error from shipboard radar[J]. Journal of System Simulation, 2013, 25(4): 188-192 (in Chinese).
[5] 孙世岩, 张国栋. 舰艇摇摆对雷达目标跟踪精度的影响分析[J]. 火力指挥控制, 2011, 36(5): 75-78. SUN S Y, ZHANG G D. Target tracking error analysis caused by ship's pitch and roll[J]. Fire Control & Command Control, 2011, 36(5): 75-78 (in Chinese).
[6] 朱绍强, 李相民, 李丹. 舰炮武器系统海上动态精度实验可行性探讨[J]. 舰船电子工程, 2012, 32(3): 94-96. ZHU S Q, LI X M, LI D. Feasibility discussion of dynamic accuracy test at sea for navy gun weapon system[J]. Ship Electronic Engineering, 2012, 32(3): 94-96 (in Chinese).
[7] 付强, 朱纪洪, 王春平. 蛇形机动目标航迹旋转对射弹脱靶量的影响[J]. 清华大学学报(自然科学版), 2015, 55(8): 884-888. FU Q, ZHU J H, WANG C P. Impact of space rotation on shell distances for serpentine fight path maneuvering[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(8): 884-888 (in Chinese).
[8] 李正周, 刘国金. 基于均值漂移和卡尔曼滤波的目标跟踪方法[J]. 弹箭与制导学报, 2008, 28(1): 71-74. LI Z Z, LIU G J. Target tracking based on mean-shift and Kalman filter[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(1): 71-74 (in Chinese).
[9] 沈悦, 张雷, 傅忠谦, 等. 区间卡尔曼滤波算法在高动态导航的研究[J]. 宇航学报, 2013, 34(3): 355-361. SHEN Y, ZHANG L, FU Z Q, et al. Interval Kalman filtering algorithm for high dynamic navigation and positioning[J]. Journal of Astronautics, 2013, 34(3): 355-361 (in Chinese).
[10] 崔乃刚, 张龙, 王小刚, 等. 自适应高阶容积卡尔曼滤波在目标跟踪中的应用[J]. 航空学报, 2015, 36(12): 3885-3895. CUI N G, ZHANG L, WANG X G, et al. Application of adaptive high-degree cubature Kalman filter in target tracking[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3886-3895 (in Chinese).
[11] 于浛, 魏喜庆, 宋申民, 等. 基于自适应容积卡尔曼滤波的非合作航天器相对运动估计[J]. 航空学报, 2014, 35(8): 2251-2260. YU H, WEI X Q, SONG S M, et al. Relative motion estimation of non-cooperative spacecraft based on adaptive CKF[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2251-2260 (in Chinese).
[12] 李理敏, 龚文斌, 刘会杰, 等. 基于自适应扩展卡尔曼滤波的载波跟踪算法[J]. 航空学报, 2012, 33(7): 1319-1328. LI L M, GONG W B, LIU H J, et al. A carrier tracking algorithm based on adaptive extend Kalman filter[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1319-1328 (in Chinese).
[13] 李文, 李清东, 李亮, 等. 基于模糊自适应卡尔曼滤波的大气数据辅助姿态算法[J]. 航空学报, 2015, 36(4): 1267-1274. LI W, LI Q D, LI L, et al. Air data assisted attitude algorithm based on fuzzy adaptive Kalman filter[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1267-1274 (in Chinese).
[14] 魏喜庆, 宋申民. 基于改进容积卡尔曼滤波的奇异避免姿态估计[J]. 航空学报, 2013, 34(3): 610-619. WEI X Q, SONG S M. Improved cubature Kalman filter based attitude estimation avoiding singularity[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 610-619 (in Chinese).
[15] 吴楠, 陈磊. 高超超声速滑翔再入飞行器弹道估计的自适应卡尔曼滤波[J]. 航空学报, 2013, 34(8): 1960-1971. WU N, CHEN L. Adaptive Kalman filtering for trajectory estimation of hypersonic glide reentry vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1960-1971 (in Chinese).
[16] LIU Y, DONG K, WANG H P, et al. Adaptive Gaussian sum squared-root cubature Kalman filter with split-merge scheme for state estimation[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1242-1250.
[17] 王琪. 基于惯性测量的全舰统一姿态基准技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2007: 5-15. WANG Q.Research of unified attitude reference technology of the whole ship based on inertial measurement[D].Harbin: Harbin Engineering University,2007:5-15(in Chinese).
[18] 王跃钢, 杨家胜, 杨波. 维度未知条件下捷联惯导系统晃动基座的初始对准[J]. 航空学报, 2012, 33(12): 2322-2329. WANG Y G, YANG J S, YANG B. SINS initial alignment of swaying base under geographic latitude uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2322-2329 (in Chinese).
[19] 刘占超, 房建成. 基于双捷联算法的POS误差在线标定方法[J]. 航空学报, 2012, 33(9): 1679-1687. LIU Z C, FANG J C. Online calibration of POS error based on double strapdown algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1679-1687 (in Chinese).
[20] 谢阳光, 伊国兴, 王常虹, 等. 高斯-厄米特滤波器在捷联惯导系统初始对准中的应用[J]. 航空学报, 2012, 33(3): 554-560. XIE Y G, YI G X, WANG C H, et al. Application of Gauss-Hermit filter in SINS alignment[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 554-560 (in Chinese).
[21] 刘言. 基于光纤陀螺舰载捷联垂直基准关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 23-29. LIU Y. The research on the shipboard strapdowm vertical reference unit based on fiber optic gyroscope[D]. Harbin: Harbin Institute of Technology, 2011: 23-39 (in Chinese).

Outlines

/