ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Research progress in guidance and control of automatic carrier landing of carrier-based aircraft
Received date: 2016-05-13
Revised date: 2016-07-28
Online published: 2016-08-30
Supported by
National Natural Science Foundation of China (61304223, 61533008, 61673209); the Fundamental Research Funds for the Central Universities (NJ20160026, NZ2015206)
Automatic carrier landing of carrier-based aircraft is a complex system engineering. This paper summarizes the development of automatic carrier landing system (ACLS) and key techniques of guidance and control for carrier landing. The development history and design specification of the ACLS are described. The basic framework and operational principle of the ACLS are discussed in detail. Based on the summary of automatic carrier landing guidance and control key problems of carrier-based aircraft, the development of key techniques of automatic carrier landing is summarized and analyzed, including the aircraft mathematical modeling, carrier landing guidance, carrier landing flight control, power compensation and auto-throttle control, flight deck modeling, prediction and compensation, airwake modeling and restrain, radar noise restrain and error correct, wave-off and bolt decision and control. A conclusion of the research findings of automatic carrier landing guidance and control is given, and future development trends are forecasted.
ZHEN Ziyang , WANG Xinhua , JIANG Ju , YANG Yidong . Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(2) : 20435 -020435 . DOI: 10.7527/S1000-6893.2016.0224
[1] HUFF R, MARTORELLA P, MCNEILL W, et al. Carrier landing simulation results of precision flight path controllers in manual and automatic approach[C]//Proceedings of the 10th AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 1983:1-9.
[2] 杨一栋, 张宏军, 姜义庆. 舰载机着舰引导技术译文集[M]. 北京:国防工业出版社, 2003. YANG Y D, ZHANG H J, JIANG Y Q. Translation collection of carrier landing guidance technique of carrier-based aircraft[M]. Beijing:National Defense Industry Press, 2003(in Chinese).
[3] 杨一栋, 余俊雅. 舰载飞机着舰引导与控制[M]. 北京:国防工业出版社, 2006. YANG Y D, YU J Y. Carrier landing guidance and control of carrier-based aircraft[M]. Beijing:National Defense Industry Press, 2006(in Chinese).
[4] 杨一栋. 舰载机进场着舰规范评估[M]. 北京:国防工业出版社, 2006. YANG Y D. Review of the carrier approach criteria[M]. Beijing:National Defense Industry Press, 2006(in Chinese).
[5] 杨一栋, 张宏军, 谭玮. 自动着舰引导系统验证指南[M]. 北京:国防工业出版社, 2007. YANG Y D, ZHANG H J, TAN W. Automatic carrier landing system certification manual[M]. Beijing:National Defense Industry Press, 2007(in Chinese).
[6] 杨一栋, 姜龙光, 许卫宝. 舰载机光学着舰引导控制要素[M]. 北京:国防工业出版社, 2008. YANG Y D, JIANG L G, XU W B. Outer-loop control factor for carrier aircraft[M]. Beijing:National Defense Industry Press, 2008(in Chinese).
[7] 杨一栋, 姜平, 杨民, 等. 仪表与微波着舰引导系统[M]. 北京:国防工业出版社, 2008. YANG Y D, JIANG P, YANG M, et al. Instrument carrier landing system and microwave landing system[M]. Beijing:National Defense Industry Press, 2008(in Chinese).
[8] 杨一栋, 余俊雅, 杨亚明. 舰载机着舰飞行训练认证指南[M]. 北京:国防工业出版社, 2008. YANG Y D, YU J Y, YANG Y M. Flight training qualification guide for carrier aircraft[M]. Beijing:National Defense Industry Press, 2008(in Chinese).
[9] 杨一栋, 胡建兴, 卢永锦. 光学着舰助降系统[M]. 北京:国防工业出版社, 2008. YANG Y D, HU J X, LU Y J. Carrier optical landing aid system[M]. Beijing:National Defense Industry Press, 2008(in Chinese).
[10] DAVIES W D T, NOURY R. AN/SPN-42 automatic carrier landing system:AD74-35209[R]. New York:Bell Aerospace Company, 1974.
[11] URNES J M, HESS R K. Development of the F/A-18A automatic carrier landing system[J]. Journal of Guidance, Control, and Dynamics, 1985, 8(3):289-295.
[12] PRICKETT A L, PARKES C J. Flight testing of the F/A-18E/F automatic carrier landing system[C]//Proceedings of 2001 IEEE Proceedings of Aerospace Conference. Piscataway, NJ:IEEE Press, 2001:2593-2612.
[13] MCPEAK M A. Joint USAF-USN mission need statement for precision approach and landing capability:USAF 002-94[R]. Washington, D.C.:United States Air Force, 1994.
[14] ELLIS J D. A review and analysis of precision approach and landing system (PALS) certification procedures[D]. Knoxville:University of Tennessee, 2003:1-55.
[15] JOHNSON G, PETERSON B, TAYLOR J, et al. Test results of F/A-18 autoland trials for aircraft carrier operations[C]//Proceedings of IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2001:1283-1291.
[16] SOUSA P, WELLONS L, COLBY G, et al. Test results of an F/A-18 automatic carrier landing using shipboard relative GPS[J]. International Journal of Mechanics & Materials in Design, 2003, 7(1):29-44.
[17] 王丹, 王玮. 机载光电/惯性组合着舰导引算法研究[J]. 仪器仪表学报, 2011, 32(6):1311-1316. WANG D, WANG W. Study on aircraft carrier landing algorithm based on airborne electro-optical/inertial integrated navigation system[J]. Chinese Journal of Scientific Instrument, 2011, 32(6):1311-1316(in Chinese).
[18] 王丹, 王玮, 冯培德. 机载光电/惯性组合着舰导引算法的地面验证[J]. 中国惯性技术学报, 2012, 20(2):56-60. WANG D, WANG W, FENG P D. Field verification of aircraft carrier landing algorithm based on integrated airborne infrared camera/inertial navigation system[J]. Journal of Chinese Inertial Technology, 2012, 20(2):56-60(in Chinese).
[19] 吴文海, 拜斌, 范海震, 等. 基于光电引导的全天候自动着舰模式研究[J]. 飞行力学, 2013, 31(2):126-129. WU W H, BAI B, FAN H Z, et al. Research on all-weather automatic carrier landing based on opto-electronic guidance[J]. Flight Dynamics, 2013, 31(2):126-129(in Chinese).
[20] COUTARD L, CHAUMETTE F, PFLIMLIN J M. Automatic landing on aircraft carrier by visual servoing[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2011:2843-2848.
[21] COUTARD L, CHAUMETTE F. Visual detection and 3d model-based tracking for landing on aircraft carrier[C]//Proceedings of IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2011:1746-1751.
[22] DING Z X, LI K, MENG Y, et al. FLIR/INS/RA integrated landing guidance for landing on aircraft carrier[J]. International Journal of Advanced Robotic Systems, 2015, 12:1-9.
[23] 潘婷婷, 江驹, 王新华, 等. 舰载机着舰多模态转换技术研究[J]. 飞行力学, 2014, 32(1):25-28. PAN T T, JINAG J, WANG X H, et al. Research on multiple mode conversion technology of carrier-based aircraft landing[J]. Flight Dynamics, 2014, 32(1):25-28(in Chinese).
[24] Joint strike fighter (JSF) model specification[R]. Washington, D. C.:Joint Strike Fighter Program Office, Distribution Statement, 2000.
[25] RUDOWSKY T, COOK S, HYNES M, et al. Review of the carrier approach criteria for carrier-based aircraft-phase I:NAWCADPAX/TR-2002/71[R]. Maryland:Naval Air Warfare Center Aircraft Division, 2002.
[26] 许东松, 王立新, 贾重任. 舰载飞机着舰过程的参数适配特性[J]. 航空学报, 2012, 33(2):199-207. XU D S, WANG L X, JIA Z R. Parameter matching characteristics of carrier-based aircraft during the landing process[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2):199-207(in Chinese).
[27] CONNELLY E M. Performance measures for aircraft landings as a function of aircraft dynamics:N85-14565[R]. Massachusetts:Performance Measurement Associates Inc., 1985.
[28] 杨一栋, 郑峰婴, 王新华, 等. 舰载机等效模型及着舰控制规范[M]. 北京:国防工业出版社, 2013. YANG Y D, ZHENG F Y, WANG X H, et al. Equivalent models and landing control criterion of carrier based aircraft[M]. Beijing:National Defense Industry Press, 2013(in Chinese).
[29] DAVIES W D T, NOURY R. AN/SPN-42 automatic carrier landing system[C]//Proceedings of the First Annual Advanced Control Conference. Lafayette:Dun-Donnelley Publ. Corp., 1974:99-110.
[30] BALDERSON K A, GAUBLOMME D P, THOMAS J W. Simulation validation through linear model comparison[C]//Proceedings of Flight Simulation Technologies Conference. Reston:AIAA, 1996:490-500.
[31] SCHUST A P, YOUNG P N, SIMPSON W R. Automatic carrier landing system (ACLS) category III certification manual:AD-A1181817[R]. Maryland:ARINC Research Corporation, 1982.
[32] 张明廉, 徐军. 舰载飞机自动着舰系统的研究[J]. 北京航空航天大学学报, 1994, 20(4):386-391. ZHANG M L, XU J. Studies on automatic carrier landing system for carrier aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 1994, 20(4):386-391(in Chinese).
[33] 夏桂华, 董然, 孟雪, 等. 舰载机着舰的动力学建模[J]. 哈尔滨工程大学学报, 2014, 35(4):445-456. XIA G H, DONG R, MENG X, et al. Research on the dynamic modeling for the landing of a carrier-based aircraft[J]. Journal of Harbin Engineering University, 2014, 35(4):445-456(in Chinese).
[34] 夏桂华, 董然, 许江涛, 等. 考虑扰流的舰载机终端进场线性模型[J]. 航空学报, 2016, 37(3):970-983. XIA G H, DONG R, XU J T, et al. Linearized carrier-based aircraft model in final approach phase with air turbulence considered[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):970-983(in Chinese).
[35] XIA G H, DONG R, XU J T, et al. Linearized model of carrier-based aircraft dynamics in final-approach air condition[J]. Journal of Aircraft, 2016, 53(1):33-47.
[36] KUKREJA SUNIL L, BRENNER M J. Nonlinear black-box modeling of aeroelastic systems using structure detection approach:application to F/A-18 aircraft data[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):557-564.
[37] WARD D G, MONACO J F. System identification for retrofit reconfigurable control of an F/A-18 aircraft[J]. Journal of Aircraft, 2005, 42(1):63-72.
[38] BOELY N, BOTEZ R M, KOUBA G. Identification of an F/A-18 nonlinear model between control and structural deflections[C]//Proceedings of 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009:1-31.
[39] BOELY N, BOTEZ R M, KOUBA G. Identification of a non-linear F/A-18 model by the use of fuzzy logic and neural network methods[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2010, 225(5):559-574.
[40] 甄子洋, 姬猛, 王新华, 等. 双发舰载飞机单发停车的安全着舰控制方法:ZL201110132929.6[P]. 2013-04-07. ZHEN Z Y, JI M, WANG X H, et al. Safe carrier landing method of double-engine carrier-based aircraft:ZL201110132929.6[P]. 2013-04-07(in Chinese).
[41] 吴文海, 张双中亚, 王奇, 等. 单发停车下滑着舰飞行动力学仿真分析[J]. 飞行力学, 2014, 32(6):489-493. WU W H, ZHANG S Z Y, WANG Q, et al. Simulation and analysis of one engine out glide carrier landing flight dynamics[J]. Flight Dynamics, 2014, 32(6):489-493(in Chinese).
[42] 刘智汉, 袁东, 刘超. 舰载机多体动力学仿真建模及起降过程分析[J]. 飞行力学, 2012, 30(6):485-488. LIU Z H, YUAN D, LIU C. Multi-body dynamics simulation modeling and takeoff/landing process analysis of carrier-based aircraft[J]. Flight Dynamics, 2012, 30(6):485-488(in Chinese).
[43] 杨一栋, 甄子洋, 徐佳龙, 等. 无人机着舰制导与控制[M]. 北京:国防工业出版社, 2013. YANG Y D, ZHEN Z Y, XU J L, et al. UAV carrier landing guidance and control[M]. Beijing:National Defense Industry Press, 2013(in Chinese).
[44] FORTENBAUGH R L. Practical integration of direct lift control into an automatic carrier landing system[C]//Proceedings of AIAA Guidance and Control Conference. Reston:AIAA, 1972:1-10.
[45] FITZGERALD P. Flight control system design for autonomous UAV carrier landing[D]. Cranfield:Cranfield University, 2004:131-163.
[46] CLARK J W, MILLER D P. Investigation of the use of vectored thrust during carrier landings[J]. Journal of Aircraft, 1966, 3(4):310-317.
[47] HELLER M, DAVID R, HOLMBERG J. Falling leaf motion suppression in the F/A-18 Hornet with revised flight control software[C]//Proceedings of 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2004:1-11.
[48] HELLER M, NIEWOEHNER R J, LAWSON K P. F/A-18E/F super hornet high-angle-of-attack control law development and testing[J]. Journal of Aircraft, 2001, 38(5):841-847.
[49] CHAKRABORTY A, SEILER P, BALAS G. Susceptibility of F/A-18 flight controllers to the falling-leaf mode:Linear analysis[J]. AIAA Journal of Guidance, Control, and Dynamics, 2011, 34(1):57-72.
[50] CHAKRABORTY A, SEILER P, BALAS G. Susceptibility of F/A-18 flight controllers to the falling-leaf mode:nonlinear analysis[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(1):73-85.
[51] BANNETT R J. Optimal control of the F-8C in a fully automatic carrier approach:AD-753010[R]. Springfield:National Technical Information Service, 1972.
[52] 尹海韬, 王新民, 李乐尧, 等. 基于降阶解耦的最优伺服控制器设计及在着舰控制上的应用[J]. 西北工业大学学报, 2013, 31(3):464-469. YIN H T, WANG X M, LI L Y, et al. Designing optimal servo (OS) controller with reduced-order decoupling and its application to landing control[J]. Journal of Northwestern Polytechnical University, 2013, 31(3):464-469(in Chinese).
[53] FAN Y G, LUTZE F H, CLIFF E M. Time-optimal lateral maneuvers of an aircraft[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(5):1106-1112.
[54] CRASSIDIS J L, MOOK D J. Robust control design of an automatic carrier landing system[C]//Proceedings of Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 1992:1471-1482.
[55] SUBRAHMANYAM M B. H∞ design of F/A-18A automatic carrier landing system[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(1):187-191.
[56] NIEWOEHNER R J, KAMINER I. Design of an autoland controller for carrier-based F-14 aircraft using H∞ output-feedback synthesis[C]//Proceedings of the American Control Conference. Piscataway, NJ:IEEE Press, 1994:2501-2505.
[57] SUBRAHMANYAM M B. Finite horizon H∞ and related control problems[M]. Boston:Birkhäuser Boston, 1995:93-116.
[58] BALAS G J, PACKARD A K, RENFROW J, et al. Control of the F-14 aircraft lateral-directional axis during powered approach[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(6):899-908.
[59] TU K Y, SIDERIS A, MEASE K D, et al. Robust lateral-directional control design for the F/A-18[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 1999:1213-1219.
[60] CHE J, CHEN D G. Automatic landing control using H∞ control and stable inversion[C]//Proceedings of the 40th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2001:241-246.
[61] YANG X, MEASE K D, SIDERIS A, et al. Modern design and classical performance assessment of an F/A-18 experimental flight controller[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2001:1-8.
[62] LIND R, BURKEN J. μ-synthesis of an F/A-18 controller[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2000:1-11.
[63] 袁锁中, 杨京, 龚华军, 等. 着舰导引系统H∞ 控制器设计[J]. 南京航空航天大学学报, 1998, 30(4):377-381. YUAN S Z, YANG J, GONG H J, et al. Design of an automatic carrier landing system using H∞ synthesis[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1998, 30(4):377-381(in Chinese).
[64] 代世俊, 杨一栋, 余勇. 基于LMI的H∞飞行/推力综合控制系统设计[J]. 南京航空航天大学学报, 2002, 34(4):386-390. DAI S J, YANG Y D, YU Y. Design of flight/thrust integrated control system using LMI-based H∞ synthesis[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2002, 34(4):386-390(in Chinese).
[65] 余勇, 杨一栋, 代世俊. 着舰导引中的H∞飞行/推力控制系统研究[J]. 南京理工大学学报, 2003, 27(3):256-260. YU Y, YANG Y D, DAI S J. Study of flight/thrust control system using H∞ synthesis in carrier landing system[J]. Journal of Nanjing University of Science and Technology, 2003, 27(3):256-260(in Chinese).
[66] 朱齐丹, 闻子侠, 张智, 等. 舰载机着舰侧回路混合H∞/H2模型参考LPV控制[J]. 哈尔滨工程大学学报, 2013, 34(1):83-91. ZHU Q D, WEN Z X, ZHANG Z, et al. Carrier aircraft landing mixed H∞/H2 LPV model reference control during powered approach[J]. Journal of Harbin Engineering University, 2013, 34(1):83-91(in Chinese).
[67] 陈华坤, 章卫国, 王新民. 舰载机纵向自动着舰控制系统设计[J]. 弹舰与制导学报, 2007, 27(1):73-76. CHEN H K, ZHANG W G, WANG X M. Design of automatic control system for longitudinal landing on carrier[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 27(1):73-76(in Chinese).
[68] MUELLER J, BALAS G. Implementation and testing of LPV controllers for the NASA F/A-18 Systems Research Aircraft[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2000.
[69] BALAS G J, FIALHO I, PACKARD A K, et al. On the design of LPV controllers for the F-14 lateral-directional axis during powered approach[C]//Proceedings of the American Control Conference. Piscataway, NJ:IEEE Press, 1997:123-127.
[70] FIALHO I, BALAS G J, PACKARD A K, et al. Gain-scheduled lateral control of the F-14 aircraft during powered approach landing[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(3):450-458.
[71] TOURNES C, LANDRUM B. F-14 aircraft lateral-directional adaptive control using subspace stabilization[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):167-169.
[72] BURKEN J, NGUYEN N, GRIFFIN B. Adaptive flight control design with optimal control modification for F-18 aircraft model[C]//Proceedings of AIAA Infotech@Aerospace. Reston:AIAA, 2010:1-17.
[73] SINGH L, MIOTTO P, BREGER L S. L1 adaptive control design for improved handling of the F/A-18 class of aircraft[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2013:1-12.
[74] BOSKOVIC J D, MEHRA R K. Multiple-model adaptive flight control scheme accommodation of actuator failures[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(4):712-724.
[75] BOSKOVIC J D. A new decentralized retrofit adaptive fault-tolerant flight control design[J]. International Journal of Adaptive Control and Signal Processing, 2014, 28(9):778-797.
[76] WINKER G M. Dynamic inversion plus proportional-integral controller for F/A-18[D]. California:University of California, 1999:30-80.
[77] MILLER C J. Nonlinear dynamic inversion baseline control law:Flight-test results for the full-scale advanced systems tested F/A-18 airplane[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2011:1-25.
[78] VANZWIETEN T S, GILLIGAN E T, WALL J H, et al. Adaptive augmenting control flight characterization experiment on an F/A-18:AAS 14-052[R]. Breckenridge:American Astronautical Society, 2014.
[79] JU H S, TSAI C C, LEE C. Flight path control design for glide-slope tracking by backstepping[C]//Proceedings of IEEE International Conference on Mechatronics. Piscataway, NJ:IEEE Press, 2005:887-892.
[80] JU H S, TSAI C C. Glidepath command generation and tracking for longitudinal autolanding[C]//Proceedings of the 17th IFAC World Congress. Laxenburg:International Federation of Automatic Control, 2008:1093-1098.
[81] LEE K, RAMASAMY S, SINGH S. Adaptive sliding mode 3-D trajectory control of F/A-18 model via SDU decomposition[C]//Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2008:1-22.
[82] ZHU Q D, WANG T, ZHONG X Y, et al. Adaptive variable structure guidance system design of a longitudinal automatic carrier landing system[C]//Proceedings of the 21st Chinese Control and Decision Conference. Piscataway, NJ:IEEE Press, 2009:4855-4859.
[83] 黄得刚, 章卫国, 邵山, 等. 舰载机自动着舰纵向控制系统设计[J]. 控制理论与应用, 2014, 31(12):1731-1739. HUANG D G, ZHANG W G, SHAO S, et al. Design of automatic control system for longitudinal landing on carrier[J]. Control Theory & Applications, 2014, 31(12):1731-1739(in Chinese).
[84] 朱齐丹, 孟雪, 张智. 基于非线性动态逆滑模的纵向着舰系统设计[J]. 系统工程与电子技术, 2014, 6(10):2037-2042. ZHU Q D, MENG X, ZHANG Z. Design of longitudinal carrier landing system using nonlinear dynamic inversion and sliding mode control[J]. Systems Engineering and Electronics, 2014, 6(10):2037-2042(in Chinese).
[85] JIANG X W, ZHU Q D, WEN Z X. Receding horizon control on automatic landing lateral loop of carrier-based aircraft[J]. Applied Mechanics and Materials, 2013, 300-301:1610-1616.
[86] 朱齐丹, 王立鹏, 张智, 等. 舰载机着舰侧回路时变风险权值矩阵线性变参数预测控制[J]. 控制理论与应用, 2015, 32(1):101-109. ZHU Q D, WANG L P, ZHANG Z, et al. Aircraft lateral linear parameter varying model predictive control with time varying weight[J]. Control Theory & Applications, 2015, 32(1):101-109(in Chinese).
[87] 甄子洋. 预见控制理论及应用研究进展[J]. 自动化学报, 2016, 42(2):172-188. ZHEN Z Y. Research development in preview control theory and application[J]. Acta Automatica Sinica, 2016, 42(2):172-188(in Chinese).
[88] 甄子洋, 王新华, 邵敏敏, 等. 基于控制器切换的舰载机自动着舰纵向控制器及其控制方法:CN2015102007283.3[P]. 2015-04-24. ZHEN Z Y, WANG X H, SHAO M M, et al. Controllers switching based ACLS longitudinal controller for carrier-based aircraft:CN2015102007283.3[P]. 2015-04-24(in Chinese).
[89] 甄子洋, 邵敏敏, 龚华军, 等. 基于鲁棒预见控制的舰载机自动着舰控制方法:CN201510158509.3[P]. 2015-04-03. ZHEN Z Y, SHAO M M, GONG H J, et al. Robust preview control based automatic carrier landing control for carrier-based aircraft:CN201510158509.3[P]. 2015-04-03(in Chinese).
[90] 邵敏敏, 龚华军, 甄子洋, 等. 基于H2预见控制的舰载机自动着舰控制方法[J]. 电光与控制, 2015(9):68-71. SHAO M M, GONG H J, ZHEN Z Y, et al. An H2 preview control based automatic landing control method for carrier based aircraft[J]. Electronics Optics & Control, 2015(9):68-71(in Chinese).
[91] STEINBERG M. A fuzzy logic based F/A-18 automatic carrier landing system[C]//Proceedings of AIAA Guidance, Navigation and Control Conference. Reston:AIAA, 1991:407-417.
[92] STEINBERG M. Development and simulation of an F/A-18 fuzzy logic automatic carrier landing system[C]//Proceedings of the Second IEEE International Conference on Fuzzy Systems. Piscataway, NJ:IEEE Press, 1993:797-802.
[93] MENG H, LI Y Z. Fuzzy controller design for automatic carrier landing of aircraft[C]//Proceedings of 33rd Chinese Control Conference. Piscataway, NJ:IEEE Press, 2014:4457-4461.
[94] 张敏, 陈博, 张宗麟. 舰载机横侧向着舰控制律研究[J]. 飞行力学, 2010, 28(3):24-27. ZHANG M, CHEN B, ZHANG Z L. Research on lateral landing control law of carrier-based aircraft[J]. Flight Dynamics, 2010, 28(3):24-27(in Chinese).
[95] HA C. Gain-scheduled directional guidance controller design using a genetic algorithm for automatic precision landing[J]. International Journal of Control, Automation and Systems, 2010, 8(1):107-117.
[96] LI J N, DUAN H B. Simplified brain storm optimization approach to control parameter optimization in F/A-18 automatic carrier landing system[J]. Aerospace Science and Technology, 2015, 42:187-195.
[97] STEINBERG M L, PAGET A B. A comparison of neural, fuzzy, evolutionary, and adaptive approaches for carrier landing[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2001:1-11.
[98] RICHARDS R A. Application of multiple artificial intelligence techniques for an aircraft carrier landing decision support tool[C]//Proceedings of the 2002 IEEE International Conference on Fuzzy Systems. Piscataway, NJ:IEEE Press, 2002:7-11.
[99] SURESH S, OMKAR S N, MANI V, et al. Direct adaptive neural flight controller for F-8 fighter aircraft[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2):454-464.
[100] CRASSIDIS J L, MOOK D J. Modeling an autopilot and thrust compensator in an automatic carrier landing system[C]//Proceedings of the AIAA Flight Simulation Technologies Conference. Reston:AIAA, 1991:368-377.
[101] 张玉洁, 杨一栋. 保持飞行迎角恒定的动力补偿系统性能分析[J]. 飞行力学, 2006, 24(4):30-33. ZHANG Y J, YANG Y D. Analysis of the approach power compensator system with constant angle of attack[J]. Flight Dynamics, 2006, 24(4):30-33(in Chinese).
[102] ZHU Q D, LI J L, LI Y Z, et al. The approach power compensation system of carrier aircraft[C]//Proceedings of 25th Chinese Control and Decision Conference. Piscataway, NJ:IEEE Press, 2013:5074-5076.
[103] ZHU Q D, WANG T, ZHANG W, et al. Variable structure approach power compensation system design of an automatic carrier landing system[C]//Proceedings of the 21st Chinese Control and Decision Conference. Piscataway, NJ:IEEE Press, 2009:5517-5521.
[104] 满翠芳, 江驹, 王新华, 等. 舰载机动力补偿系统模糊逻辑设计技术[J]. 南京航空航天大学学报, 2010, 42(5):656-660. MAN C F, JIANG J, WANG X H, et al. Carrier-based aircraft approach power compensator system design based on fuzzy logic techniques[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5):656-660(in Chinese).
[105] 朱齐丹, 李新飞, 吕开东. 基于滑模变结构控制的舰载机动力补偿系统设计[J]. 飞行力学, 2012, 30(3):223-227. ZHU Q D, LI X F, LYU K D. Approach power compensator system for carrier-based aircraft with variable structure control[J]. Flight Dynamics, 2012, 30(3):223-227(in Chinese).
[106] 李忠东. 自动油门控制技术在舰载机上的应用[J]. 飞机设计, 2012, 32(4):22-24. LI Z D. Application of automatic throttle control (ATC) technology in the carrier aircraft[J]. Aircraft Design, 2012, 32(4):22-24(in Chinese).
[107] 杨一栋, 江驹. 保持飞行迎角恒定的飞行/推力综合控制[J]. 航空学报, 1996, 17(4):460-464. YANG Y D, JIANG J. Integrated flight/thrust control system with constant angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(4):460-464(in Chinese).
[108] 杨一栋, 王新华, 龚华军. 飞行综合控制[M]. 北京:国防工业出版社, 2015. YANG Y D, WANG X H, GONG H J. Integrated flight control[M]. Beijing:National Defense Industry Press, 2015(in Chinese).
[109] 李冀鑫, 侯志强, 徐彦军. 基于总能量理论的着舰飞行/推力控制系统[J]. 飞行力学, 2010, 28(2):35-38. LI J X, HOU Z Q, XU Y J. Integrated carrier landing flight/thrust control system based on total energy theory[J]. Flight Dynamics, 2010, 28(2):35-38(in Chinese).
[110] Aircraft carrier reference data manual:NAEC-MISC-06900[R]. 1997.
[111] YIN H T, WANG X M, LI W C, et al. Study of disturbances model on carrier-based aircraft landing process[J]. Applied Mechanics and Materials, 2013, 321-324:824-828.
[112] 许东松, 刘星宇, 王立新. 航母运动对舰载飞机着舰安全性的影响[J]. 北京航空航天大学学报, 2011, 37(3):289-294. XU D S, LIU X Y, WANG L X. Influence of carrier motion on landing safety for carrier-based airplanes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3):289-294(in Chinese).
[113] SULEIMAN B M. Identification of finite-degree-of-freedom models for ship motions[D]. Virginia:Virginia Polytechnic Institute and State University, 2000:1-24.
[114] YUMORI I. Real time prediction of ship response to ocean waves using time series analysis[C]//Proceedings of OCEANS. Piscataway, NJ:IEEE Press, 1981:1082-1089.
[115] SIDAR M M, DOOLIN B F. On the feasibility of real-time prediction of aircraft carrier motion at sea[J]. IEEE Transactions on Automatic Control, 1983, 28(3):350-356.
[116] CORTES N B. Predicting ahead on ship motions using Kalman filter implementation[D]. Melbourne:RMIT University, 1999:20-50.
[117] KHAN A, BIL C, MARION K E. Ship motion prediction for launch and recovery of air vehicles[C]//Proceedings of MTS/IEEE OCEANS. Piscataway, NJ:IEEE Press, 2005:2795-2801.
[118] YANG X L, POTA H, GARRATT M, et al. Ship motion prediction for maritime flight operations[C]//Proceedings of the 17th IFAC World Congress. Laxenburg:International Federation of Automatic Control, 2008:12407-12412.
[119] 王敏, 张晶, 申功璋. 基于甲板运动预报的自动着舰系统综合设计[J]. 系统仿真学报, 2010, 22(S1):119-122. WANG M, ZHANG J, SHEN G Z. Design of automatic carrier landing system based on deck motion prediction[J]. Journal of System Simulation, 2010, 22(S1):119-122(in Chinese).
[120] 周鑫, 彭荣鲲, 袁锁中, 等. 舰载机着舰纵向甲板运动预估及补偿技术[J]. 南京航空航天大学学报, 2013, 45(5):599-604. ZHOU X, PENG R K, YUAN S Z, et al. Longitudinal deck motion prediction and compensation for carrier landing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(5):599-604(in Chinese).
[121] ZHAO X, XU R, KWAN C. Ship-motion prediction:Algorithms and simulation results[C]//Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway, NJ:IEEE Press, 2004:125-128.
[122] 周鑫, 彭荣鲲, 袁锁中. 舰载机理想着舰点垂直运动的预估与补偿[J]. 航空学报, 2013, 34(7):1663-1669. ZHOU X, PENG R K, YUAN S Z. Prediction and compensation for vertical motion of ideal touchdown point in carrier landing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1663-1669(in Chinese).
[123] 余勇, 杨一栋. 侧向甲板运动补偿技术研究[J]. 航空学报, 2003, 24(3):69-71. YU Y, YANG Y D. Study on the lateral deck motion compensation technique[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3):69-71(in Chinese).
[124] 江驹, 王新华, 甄子洋, 等. 基于甲板运动补偿的舰载机自动着舰引导控制方法:ZL201110322181.6[P]. 2013-08-21. JIANG J, WANG X H, ZHEN Z Y, et al. Automatic carrier landing guidance control based on deck motion compensation for carrier-based aircraft:ZL201110322181.6[P]. 2013-08-21(in Chinese).
[125] JOURNÉE J M J. Theoretical manual of SEAWAY:Report1216a[R]. Delft:Delft University of Technology, 2001.
[126] 吕开东, 李新飞, 姜迈, 等. 舰载机着舰过程的舰尾气流场数值仿真分析[J]. 飞行力学, 2013, 31(1):18-23. LYU K D, LI X F, JIANG M, et al. Simulation analysis on carrier landing disturbance model[J]. Flight Dynamics, 31(1):18-23(in Chinese).
[127] POLSKY S, NAYLOR S. CVN airwake modeling and integration:initial steps in the creation and implementation of a virtual burble for F-18 carrier landing simulations[C]//Proceedings of AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston:AIAA, 2005:1-9.
[128] SHIPMAN J D, ARUNAJATESAN S, CAVALLO P A, et al. Dynamic CFD simulation of aircraft recovery to an aircraft carrier[C]//Proceedings of 26th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2008:1-11.
[129] URNES J M, HESS R K. Development of the F/A-18A automatic carrier landing system[J]. Journal of Guidance, Control, and Dynamics, 1985, 8(3):289-295.
[130] YIN H T, WANG X M, LI W C, et al. Study of disturbances model on carrier-based aircraft landing process[J]. Applied Mechanics and Materials, 2013, 321-324:824-828.
[131] 胡国才, 王奇, 刘湘一, 等. 舰尾流对舰载机着舰轨迹和动态响应的影响研究[J]. 飞行力学, 2009, 27(6):18-21. HU G C, WANG Q, LIU X Y, et al. Influence of carrier air wake on carrier-based aircraft landing trajectory and dynamic response[J]. Flight Dynamics, 2009, 27(6):18-21(in Chinese).
[132] 江驹, 甄子洋, 王新华, 等. 抑制舰尾气流扰动的舰载机着舰引导与控制系统及方法:ZL201110287699.0[P]. 2014-02-08. JIANG J, ZHEN Z Y, WANG X H, et al. Airwake disturbance rejection based carrier landing guidance and control system of carrier-based aircraft:ZL201110287699.0[P]. 2014-02-08(in Chinese).
[133] 焦鑫, 江驹, 王新华, 等. 基于模型参考模糊自适应的舰尾流抑制方法[J]. 南京航空航天大学学报, 2013, 45(3):396-401. JIAO X, JIANG J, WANG X H, et al. Air wake rejecting method based on model reference fuzzy adapting system control[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(3):396-401(in Chinese).
[134] 王奇, 吴文海, 胡国才. 抗尾流干扰的自动着舰非线性控制研究[J]. 飞行力学, 2013, 31(4):31-34. WANG Q, WU W H, HU G C. Research on nonlinear control of automated carrier landing with the airwake rejection ability[J]. Flight Dynamics, 2013, 31(4):31-34(in Chinese).
[135] 甄子洋, 邵敏敏, 龚华军, 等. 一种含舰尾气流补偿的舰载机自动着舰复合控制方法:CN201510243842.4[P]. 2015-05-13. ZHEN Z Y, SHAO M M, GONG H J. Airwake compensation based automatic carrier landing composite control for carrier-based aircraft:CN201510243842.4[P]. 2015-05-13(in Chinese).
[136] 郑峰婴, 杨一栋. 变后掠翼舰载机抗侧风自动着舰引导系统[J]. 飞行力学, 2011, 29(2):37-40. ZHENG F Y, YANG Y D. Counteracting side wind in automatic carrier landing system for variable swept wing carrier-aircraft[J]. Flight Dynamics, 2011, 29(2):37-40(in Chinese).
[137] MOOK D J, SWANSON D A, ROEMER M J, et al. Improved noise rejection in automatic carrier landing systems[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(2):509-519.
[138] CRASSIDIS J L, MOOK D J, MCGRATH J M. Automatic carrier landing system utilizing aircraft sensors[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(5):914-921.
[139] 桑德一, 赵建军, 杨利斌. 舰载机着舰引导雷达标校数据去噪方法研究[J]. 计算机与数字工程, 2015, 43(3):387-391. SANG D Y, ZHAO J J, YANG L B. Denoising method for landing guidance radar calibration data[J]. Computer and Digital Engineering, 2015, 43(3):387-391(in Chinese).
[140] 余勇, 杨一栋, 代世俊. 舰载飞机复飞决策技术研究与实时可视化仿真[J]. 飞行力学, 2002, 20(2):31-38. YU Y, YANG Y D, DAI S J. Study on wave off decision techniques and real-time visible simulation of carrier-based aircraft[J]. Flight Dynamics, 2002, 20(2):31-38(in Chinese).
[141] 焦鑫, 江驹, 王新华, 等. 舰载机综合复飞决策研究[J]. 飞行力学, 2012, 30(5):405-409. JIAO X, JIANG J, WANG X H, et al. Research on comprehensive wave-off decision of carrier-based aircraft[J]. Flight Dynamics, 2012, 30(5):405-409(in Chinese).
[142] HAN Z M, HONG G X. Analysis of security window in automatic landing of the carrier-borne aircraft[J]. Research Journal of Applied Sciences, Engineering and Technology, 2014, 7(14):2874-2879.
[143] 沈宏良, 龚正. 舰载飞机复飞决策与操纵研究[J]. 飞行力学, 2008, 26(5):5-9. SHEN H L, GONG Z. Research on wave-off decision and control for carrier aircraft[J]. Flight Dynamics, 2008, 26(5):5-9(in Chinese).
[144] 王宝宝, 龚华军, 王新华, 等. 舰载机智能复飞决策技术研究[J]. 飞行力学, 2010, 28(2):42-45. WANG B B, GONG H J, WANG X H, et al. Study on intelligent wave-off decision techniques of carrier aircraft[J]. Flight Dynamics, 2010, 28(2):42-45(in Chinese).
[145] 杨一栋, 江驹, 张洪涛, 等. 着舰安全与复飞技术[M]. 北京:国防工业出版社, 2013. YANG Y D, JIANG J, ZHANG H T, et al. Safety and waveoff technologies in carrier landing[M]. Beijing:National Defense Industry Press, 2013(in Chinese).
[146] NORWOOD D S, CHICHESTER R H. Full scale aircraft drop test program for the F-35C carrier variant[C]//Proceedings of 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2015:1-22.
[147] 杨一栋, 袁锁中, 王夷. 无人直升机着舰制导与控制[M]. 北京:国防工业出版社, 2013. YANG Y D, YUAN S Z, WANG Y. Guidance and control of unmanned helicopter ship landing[M]. Beijing:National Defense Industry Press, 2013(in Chinese).
/
〈 | 〉 |