Solid Mechanics and Vehicle Conceptual Design

Reliability-based optimization algorithm using hybrid model with truncated probability and non-probability

  • ZHOU Ling ,
  • LI Yanhui
Expand
  • Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

Received date: 2016-03-11

  Revised date: 2016-08-12

  Online published: 2016-08-26

Supported by

National Natural Science Foundation of China (51305421); National Defence Technology Basis Research Project of China (JSZL2014130B005); Young Scholars Fund of Development Project of Science and Technology of Jilin Province (20140520137JH)

Abstract

A new hybrid reliability model is presented for the case that truncated probabilistic variables and non-probabilistic variables exist simultaneously in engineering. Based on the new hybrid reliability model and reliability index assessment (RIA) method, a nested loop hybrid reliability-based optimization model is also presented. Modified ST-Powell optimization algorithm with better search strategy is used to search the optimal values of design variables in the out-loop. Modified limit step length iteration algorithm, which can ensure convergence, is used to solve the new hybrid reliability index in the inner-loop. Numerical examples show that the global optimization rate of the modified ST-Powell optimization algorithm with better search strategy can be promoted significantly, and the validity of hybrid reliability-based optimization model searched by the algorithm presented in this paper is proved. The algorithm can obtain the optimal values for hybrid reliability-based optimization model with high nonlinear limit state function. The algorithm presented in this paper has a good adaptability to hybrid reliability-based optimization problems of engineering structure.

Cite this article

ZHOU Ling , LI Yanhui . Reliability-based optimization algorithm using hybrid model with truncated probability and non-probability[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(1) : 220216 -220216 . DOI: 10.7527/S1000-6893.2016.0233

References

[1] 王光远. 工程软设计理论[M]. 北京:科学出版社, 1992:1-10. WANG G Y. Theory of soft design in engineering[M]. Beijing:Science Press, 1992:1-10(in Chinese).
[2] 安伟光, 蔡荫林, 陈卫东. 随机结构系统可靠性分析与优化设计[M]. 哈尔滨:哈尔滨工程大学出版社, 2005:15-20. AN W G, CAI Y L, CHEN W D. Reliability analysis and optimization design of random structure system[M]. Harbin:Harbin Engineering University Press, 2005:15-20(in Chinese).
[3] VALDEBENITO M A, SCHUELLER G I. A survey on approaches for reliability-based optimization[J]. Structural & Multidisciplinary Optimization, 2010, 42(5):645-663.
[4] LUO Y J, KANG Z, ALEX L. Structural reliability assessment based on probability and convex set mixed model[J]. Computers & Structures, 2009, 87(21):1408-1415.
[5] QIU Z P, WANG J. The interval estimation of reliability for probabilistic and non-probabilistic hybrid structural system[J]. Engineering Failure Analysis, 2010, 17(5):1142-1154.
[6] DU X, SUDJIANTO A, HUANG B. Reliability-based design with the mixture of random and interval variables[J]. Journal of Mechanical Design, 2005, 127(6):1068-1076.
[7] 程远胜, 钟玉湘, 游建军. 概率及非概率不确定性条件下结构鲁棒设计方法[J]. 工程力学, 2005, 22(4):10-14. CHENG Y S, ZHONG Y X, YOU J J. Structural robust design subject to probabilistic and non-probabilistic uncertainties[J]. Engineering Mechanics, 2005, 22(4):10-14(in Chinese).
[8] ELISHAKOFF I. Essay on uncertainties in elastic and viscoelastic structure:From A. M. Freudenthal's criticisms to modern convex modeling[J]. Computers & Structures, 1995, 56(6):871-895.
[9] BEN-HAIM Y. A non-probabilistic concept of reliability[J]. Structural Safety, 1994, 14(4):227-245.
[10] JIANG C, LONG X Y, HAN X, et al. Probability-interval hybrid reliability analysis for cracked structures existing epistemic uncertainty[J]. Engineering Fracture Mechanics, 2013, 112-113(11):148-164.
[11] YANG X F, LIU Y S, ZHANG Y S, et al. Probability and convex set hybrid reliability analysis based on active learning Kriging model[J]. Applied Mathematical Modelling, 2015, 39(14):3954-3971.
[12] WU D, GAO W, FRANCIS T L, et al. Probabilistic interval limit analysis for structures with hybrid uncertainty[J]. Engineering Structures, 2016, 114:195-208.
[13] 王军, 邱志平. 结构的概率-非概率混合可靠性模型[J]. 航空学报, 2009, 30(8):1398-1404. WANG J, QIU Z P. Probabilistic and non-probabilistic hybrid reliability model of structures[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8):1398-1404(in Chinese).
[14] 孙文彩, 杨自春, 唐卫平. 随机和区间混合变量下结构可靠性分析方法研究[J]. 工程力学, 2010, 27(11):22-27. SUN W C, YANG Z C, TANG W P[J]. Structural reliability analysis based on random and interval mixed model[J]. Engineering Mechanics, 2010, 27(11):22-27(in Chinese).
[15] GE R, CHEN J Q, WEI J H. Reliability-based design of composites under the mixed uncertainties and the optimization algorithm[J]. Acta Mechanica Solida Sinica, 2008, 21(1):19-27.
[16] LUO Y J, ALEX L, KANG Z. Reliability-based design optimization of adhesive bonded steel-concrete composite beams with probabilistic and non-probabilistic uncertainties[J]. Engineering Structures, 2011, 33(7):2110-2119.
[17] 罗阳军, 高宗战, 岳珠峰, 等. 随机-有界混合不确定性下结构可靠性优化设计[J]. 航空学报, 2011, 32(6):1058-1066. LUO Y J, GAO Z Z, YUE Z F, et al. Reliability-based optimization design for structures with stochastic and bounded parameter uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1058-1066(in Chinese).
[18] XIA B Z, LÜ H, YU D J, et al. Reliability-based design optimization of structural systems under hybrid probabilistic and interval model[J]. Computers and Structures, 2015, 160:126-134.
[19] XIAO N C, LI Y F, YANG Y J, et al. A novel reliability method for structural systems with truncated random variables[J]. Structural Safety, 2014, 50:57-65.
[20] 周凌, 安伟光, 贾宏光. 超脱球凸集合可靠性综合指标定义与求解方法[J]. 航空学报, 2011, 32(11):2025-2035. ZHOU L, AN W G, JIA H G. Definition and solution of reliability comprehensivc index of super-ellipsoid convex set[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11):2025-2035(in Chinese).
[21] 周凌, 贾宏光, 安伟光. 相关正态空间中改进的有限步长迭代法[J]. 工程力学, 2012, 29(11):137-142. ZHOU L, JIA H G, AN W G. Modified limit step length iteration algorithm in correlation normal space[J]. Engineering Mechanics, 2012, 29(11):137-142(in Chinese).
[22] 陈卫东, 蔡荫林, 于诗源. 工程优化方法[M]. 哈尔滨:哈尔滨工程大学出版社, 2006:100-110. CHEN W D, CAI Y L, YU S Y. Engineering optimization methods[M]. Harbin:Harbin Engineering University Press, 2006:100-110(in Chinese).
[23] 江善和, 王其申, 江巨浪. 一种新型SkewTent映射的混沌混合优化算法[J]. 控制理论与应用, 2007, 24(2):269-273. JIANG S H, WANG Q S, JIANG J L. Chaotic hybrid optimization algorithm of a new SkewTent map[J]. Control Theory & Applications, 2007, 24(2):269-273(in Chinese).
[24] 杨迪雄, 李刚, 程耿东. 非线性函数的混沌优化方法比较研究[J]. 计算力学学报, 2004, 21(3):257-262. YANG D X, LI G, CHEN G D. Comparative study on chaos optimization algorithm for nonlinear function[J]. Chinese Journal of Computational Mechanics, 2004, 21(3):257-262(in Chinese).

Outlines

/