ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Optimal evasive maneuver strategy with potential threatening area being considered
Received date: 2016-03-08
Revised date: 2016-07-28
Online published: 2016-08-16
Supported by
National Natural Science Foundation of China (11572345)
With the execution of a series of engineering applications of orbital transfer vehicles, the threat of non-cooperative rendezvous to the target spacecraft can be more and more serious. For this problem, this paper proposes a new evasive maneuver index-potential threatening area, using the characteristic of rendezvous. Compared with traditional evasive maneuver indexes such as relative distance and collision probability, the index of potential threatening area is more adapted to the target, and will improve its evasion ability when the chaser is a noncooperative spacecraft. A multi-impulse rendezvous optimization model is built, and then the definition and computing method for the potential threaten area are proposed. The target evasive optimization model is established by using genetic algorithm, and the potential threaten area is set as the optimization target. Based on the two optimization models, a case (with 100 km being the initial distance) of numerical simulation is executed to verify the correctness of the proposed models. The numerical results show that the potential threatening area has a rigorously monotone decreasing relationship with the magnitude of the impulse. The proposed approach offers a novel index in solving orbital evasion problem and can improve the viability of the target.
YU Dateng , WANG Hua , SUN Fuyu . Optimal evasive maneuver strategy with potential threatening area being considered[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(1) : 320202 -320202 . DOI: 10.7527/S1000-6893.2016.0222
[1] 于大腾, 王华, 尤岳, 等. 不完备轨道信息下的LEO轨道面内机动检测方法[J]. 宇航学报, 2013, 34(3):314-319. YU D T, WANG H, YOU Y, et al. A new in-plane maneuver detection method for incomplete orbit information of LEO spacecraft[J]. Journal of Astronautics, 2013, 34(3):314-319(in Chinese).
[2] LUO Y Z, ZHANG J, TANG G J. Survey of orbital dynamics and control of space rendezvous[J]. Chinese Journal of Aeronautics, 2014, 27(1):1-11.
[3] SLATER G L, BYRAM S M, WILLIAMS T W, et al. Collision avoidance for satellites in formation flight[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5):1040-1046.
[4] BOMBARDELLI C, HERNANDO-AYUSO J. Optimal impulsive collision avoidance in low earth orbit[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(2):217-225.
[5] 姚党鼐, 王振国. 航天器在轨防碰撞自主规避策略[J]. 国防科技大学学报, 2012, 34(6):100-110. YAO D N, WANG Z G. Active collision avoidance maneuver strategy for on-orbit spacecraft[J]. Journal of National University of Defense Technology, 2012, 34(6):100-110(in Chinese).
[6] VALK S, LEMATRE A, DELEIE F. Semi-analytical theory of mean orbital motion for geosynchronous space debris under gravitational influence[J]. Advances in Space Research, 2009, 3(7):1070-1082.
[7] BOMBARDELLI C. Analytical formulation of impulsive collision avoidance dynamics[J]. Celestial Mechanics & Dynamical Astronomy, 2014, 118(2):99-114.
[8] 王华, 李海阳, 唐国金. 基于碰撞概率的交会对接最优碰撞规避机动[J]. 宇航学报, 2008, 29(1):220-223. WANG H, LI H Y, TANG G J. Collision probability based optimal collision avoidance maneuver in rendezvous and docking[J]. Journal of Astronautics, 2008, 29(1):220-223(in Chinese).
[9] 郑重, 宋申民. 考虑避免碰撞的编队卫星自适应协同控制[J]. 航空学报, 2013, 34(8):1934-1943. ZHENG Z, SONG S M. Adaptive coordination control of satellite within formation considering collision avoidance[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1934-1943(in Chinese).
[10] 黄海滨, 马广富, 庄宇飞, 等. 编队卫星队形重构防碰撞最优轨迹规划[J]. 航空学报, 2010, 31(9):1818-1823. HUANG H B, MA G F, ZHUANG Y F, et al. Optimal trajectory planning for reconfiguration of satellite formation with collision avoidance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1818-1823(in Chinese).
[11] SULTAN C, SEERERAM S, MEHRA R K. Deep space formation flying spacecraft path planning[J]. The International Journal of Robotics Research, 2007, 26(4):405-430.
[12] 宋申民, 张大伟, 裴润. 非合作自主交会对接的动态障碍物躲避制导[J]. 中国空间科学技术, 2010, 12(6):39-48. SONG S M, ZHANG D W, PEI R. Guidance for dynamic obstacle avoidance of autonomous rendezvous and docking with non-cooperative target[J]. Chinese Space Science and Technology, 2010, 12(6):39-48(in Chinese).
[13] 高鹏, 罗建军. 航天器规避动态障碍物的自适应人工势函数制导[J]. 中国空间科学技术, 2012, 10(5):1-8. GAO P, LUO J J. Adaptive artificial potential function guidance for dynamic obstacle avoidance of spacecraft[J]. Chinese Space Science and Technology, 2012, 10(5):1-8(in Chinese).
[14] ZHANG G, CAO X B, MA G F. Reachable domain of spacecraft with a single tangent impulse considering trajectory safety[J]. Acta Astronautica, 2013, 91(10):228-236.
[15] WEN C X, ZHAO Y S, SHI P. Precise determination of reachable domain for spacecraft with single impulse[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):1767-1779.
[16] 武健, 刘新学, 舒健生, 等. 在轨拦截器停泊轨道优化研究[J]. 飞行力学, 2014, 32(3):253-257. WU J, LIU X X, SHU J S, et al. Research on parking orbit optimization of on-orbit interceptor[J]. Flight Dynamics, 2014, 32(3):253-257(in Chinese).
[17] 常燕, 周军. 空间飞行器追踪区设计[J]. 宇航学报, 2006, 27(6):1228-1232. CHANG Y, ZHOU J. Tracing area design for spacecraft[J]. Journal of Astronautics, 2006, 27(6):1228-1232(in Chinese).
[18] 李雪华, 和兴锁, 仲勤芳. 单脉冲作用下卫星轨道的可达区域研究[J]. 西北工业大学学报, 2011, 29(1):114-117. LI X H, HE X S, ZHONG Q F. Determining reachable domain of satellite trajectories generated by single impulse[J]. Journal of Northwestern Polytechnical University, 2011, 29(1):114-117(in Chinese).
[19] XUE D, LI J F, BAOYIN H X. Reachable domain for spacecraft with a single impulse[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3):934-942.
[20] VINH N X, GILBERT E G, HOWE R M, et al. Reachable domain for interception at hyperbolic speeds[J]. Acta Astronautica, 1995, 35(1):1-8.
[21] 唐国金, 罗亚中, 张进. 空间交会对接任务规划[M]. 北京:科学出版社, 2007:86-105. TANG G J, LUO Y Z, ZHANG J. Rendezvous and docking mission planning[M]. Beijing:Science Press, 2007:86-105(in Chinese).
[22] HORIE K, CONWAY B. Genetic algorithm preprocessing for numerical solution of differential games problems[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6):1075-1078.
/
〈 | 〉 |